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Robot Localization and Mapping Problem
with Unknown Noise Characteristics

Hamzah Ahmad and Toru Namerikawa

Abstract— In this paper, we examine the H∞ Filter-based
SLAM especially about its convergence properties. In contrast
to Kalman Filter approach that considers zero mean gaussian
noise, H∞ Filter is more robust and may provide sufficient
solutions for SLAM in an environment with unknown statistical
behavior. Due to this advantage, H∞ Filter is proposed in this
paper, to efficiently estimate the robot and landmarks location
under worst case situations. H∞ Filter requires the designer to
appropriately choose the noise’s covariance with respect to γ to
obtain a desired outcome. We show some of the conditions
to be satisfy in order to achieve better estimation results
than Kalman Filter. From the experimental results, H∞ Filter
performs better than Kalman Filter for a case of bigger robot
initial uncertainties. Subsequently, this proved that H∞ Filter
can provide another available estimation method for especially
in SLAM.

I. INTRODUCTION

A. Robotic Mapping

Robotics localization and mapping problem is one of
the autonomous robot applications that recently gained re-
searcher’s attention thanks to its capability that able to
support autonomous robot behavior. The problem illustrates a
case where a mobile robot is put in an unknown environment,
then takes sufficient observations about its surroundings.
Next, from this information, robot then builds a map from
what it believes. Even though the development of the robot
localization and mapping problem has passed about two
decades, there are still a lot of difficulties to be solved.

Since 1990’s, researchers around the world become more
passionate about this problem and a series of convincing
seminal papers by Smith and Cheeseman et.al [1], has urged
up this research. Consequently, its name is evolving to Simul-
taneous Localization and Mapping problem(SLAM)[2]. See
Fig.1 for SLAM illustration. As stated by its name, SLAM
consists of two general problems that are the robot localiza-
tion and mapping. Robot localization states a problem where
we are given predefined landmarks, the robot must attempt to
estimate it location relative to the map. While, robot mapping
determines a problem that given a robot trajectory, a map
must be built. Therefore, SLAM is more complicated and
needs proper effort for the solution.

Nowadays, SLAM has been applied in a wide ap-
plication, indoor or outdoor such as satellite, min-
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Fig. 1. Illustration for SLAM problem

ing, space exploration, rescue, military, etc. SLAM re-
search progress in 2D[3] or 3D applications [4][5] and
amazingly expand even to home-based robot applica-
tion. The problem is tracked in 1980’s, and improved
from the form of Topological and Metric approaches to
Behavioral approach, Mathematical-based model approach
and Probabilistic approach [2]. However, between these 3
techniques, the probabilistic approach made a significant suc-
cess than the mathematical models approach; which require
building a precise model, or the behavior approach; a method
of exploiting the sensor’s behavior to the system. In spite of
remarkable achievement of probabilistic approach, it has a
shortcoming of computational complexity. Nevertheless, with
modern software development, a considerable support and
solution to this problem may be available, and thus inspired
the development of SLAM problem.

Recently, probabilistic approaches, whether parametric or
non-parametric methods have been proposed to solve the
SLAM problems such as Kalman Filter, Unscented Kalman
Filter, Particle filter, etc.. At this end, a non-parametric
method so-called Fast-SLAM approach [2], which is claimed
can efficiently constructs the unknown map by utilizing
an amount of particle whose behaves as the uncertainty.
If more particles are used, the estimation will be better,
but in contrast they require a high computational cost for
the systems. Due to such deficiencies, such a impressive
technique does not intimidate classical methods, for example,
Kalman Filter. Moreover, no matter what kind of filters
presented above, they are familiar and fundamentally relied
on probabilistic theory. The readers are encouraged to read
about the development of SLAM in [6] which discussed the
SLAM problem from various aspects.



B. Probabilistic-based SLAM

Uncertainties and sensor noises are the most influential
elements that brought the idea of probabilistic into SLAM
problem. Governed by the law of probabilistic, the estimation
is processed to a set of information than only rely on a single
guessed method. This eventually made probabilistic method
applicable to most SLAM problems in most situations with
unknown noise characteristics.

In contrast to Kalman Filter reputation among decades
within various fields, some applications still demands further
attention for development especially due its deficiencies of
zero mean gaussian assumption. In fact, it is a wise decision
to model a system that takes into account for a worst case
of noise or when the noise statistics are partially known.
Hence, H∞ Filter is proposed in this paper, to tolerate such
a robust system. The development of H∞ Filter for SLAM
problem is theoretically shown with a brief comparison to
Kalman Filter approach[7][8]. H∞ Filter[9] is one of the
set-membership approaches, which assumes that the noise
is known in bounded energy. It is also a technique that
assumed the systems are provided with a priori information
for estimation[10][11]. H∞ Filter(HF) guarantees that the
energy gain from the noise inputs to the estimation errors
is less than a certain level. A study on its convergence has
been proposed by Hamzah et.al[12]. Further application of
Covariance Inflation to decrease the computation cost and
avoid Finite Escape Time in HF also studied in [13].

Throughout this paper, we examine the Kalman Filter
and HF performance in linear and nonlinear case SLAM
problem. We investigate the results using a constant motion
and sensors uncertainties with a perfect data association.
Even though this is seems to be simplistic, it gives a feasible
study about the estimation. HF has desirable properties and
is competitive compared to Kalman Filter[14][15] especially
in SLAM. [14] reported that, EKF with robocentric local
mapping approach, is able to decrease location uncertainty of
each location. West et.al[17] proved that HF was competent
with other well-known approaches such as KF and Particle
filter for SLAM problem. However, they did not present any
theoretical explanation or contribution about HF properties.
We show that an appropriate selection between the γ , initial
state covariance, process and measurement noise covariances
enable HF to perform better in SLAM than KF.

This paper is organized as follows. In Section II, SLAM
preliminary model is presented. Section III describes a brief
introduction of HF with a comparison between HF algorithm
and the KF, while Section IV demonstrates the main results
of convergence properties of H∞ SLAM. Section V represents
the experimental results of SLAM using both filters. Finally,
Section VI, concludes the paper.

II. SLAM PRELIMINARY MODEL

SLAM consists of two general models; Process Model and
Measurement/Observation Model(see Fig.2). Each of this
model plays an important role to achieve better estimation
about the landmarks and robot location. For the SLAM
process model, we have the following. We consider the linear

Fig. 2. SLAM Process and measurement model

SLAM problem as most of the calculation is linearized in
the entire process and may sufficiently describes the whole
system.

xRk+1 = FRkxRk +uRk + vRk , (1)

From above, FRk is the state transition matrix, xRk ∈ R
3, is

the robot state, uRk ∈R
2 is a vector of control inputs, and vRk

is a vector of temporally uncorrelated process noise errors
with zero mean and covariance, QRk . The location of the nth

landmark is denoted as pn and the landmarks are assumed to
be stationary. The stationary landmarks states are expressed
by

pnk+1 = pnk = pn (2)

where n = 1 . . .N. Using above notation with respect to
[1], the augmented process model consists of robot and
landmarks location is described as following.

xk+1 = Fkxk +uk + vk (3)

xk is the augmented state, while uk = uRk and vk = vRk as
landmarks is stationary. On the other hand, the measurement
model includes information about relative distance and angle
between the robot and any landmarks. The observation at i th

specific landmarks, yields the following equation.

zk = Hkxk +wk (4)

= Hpi pi −Hvkx(vk) +wk (5)

where wk is a vector of temporally uncorrelated observation
errors with zero mean and variance Rk. Hk is the observation
matrix and represents the output of the sensor zk to the state
vector xk when observing the ith landmark. Hpi −Hvk is the
relative measurement matrix between the landmarks and the
robot respectively. Alternatively, the observation model for
the ith landmark is written in the form

Hk = [−Hv,0 . . .0,Hpi,0 . . .0] (6)

Above equation shows observations are taken as a relative
measurement between vehicle and landmarks. Both models
are used recursively to predict and updates both landmarks
and robot position. Based on the data obtained from these
two models, then the robot built a map. Same to KF, HF
has the prediction and updates process. Details are explained
in the next section consisting of some basic assumption of
noises and a brief comparison to the KF approach.



III. H∞ FILTER-BASED SLAM

This section presents the development of HF-Based SLAM
by considering its convergence properties. Due to our ap-
proach is a probabilistic SLAM, the state covariance matrix
plays an important role to determine the level of confidence
for estimation. In SLAM, small state covariance matrix is
desired. Hence, the analysis is focusing on the convergence
behavior of HF-Based SLAM, whether it may surpass KF
performance or else.

The comparison between HF and KF for a stationary robot
case observing landmarks is evaluated in the experiments.
Some brief explanation and preparation are introduced re-
garding the differences between both filters before getting in
depth with the filter performance in SLAM. The papers in
[7][9] presented a satisfactory explanation for HF. Referring
to those, first we assumes that the noises hold the following
properties.

Assumption 1: Rk
Δ= DkDT

k ≥ 0
The above assumption is used to define that the measure-
ments are correlated with noise. We further assume that the
noises is in bounded energy which also a characteristic of
HF. This is the main dissimilarity between HF and KF.

Assumption 2: Bounded noise energy; ∑N
t=0 ‖wk‖2 <

∞,∑N
t=0 ‖vk‖2 < ∞

Qk ≥ 0, and Rk ≥ 0 are the weighting matrices for process
noise wk, and measurement noise vk respectively[7].

The differences between KF and HF exists in the form of
gain and covariance characteristics for each prediction and
updates process. For KF gain Kk and its covariance Pk we
have the following.

Kk = Pk(I +HT
k R−1

k HkPk)−1 (7)

Pk+1 = FkPk(I +HT
k R−1

k HkPk)−1FT
k +Qk (8)

As for HF, the equation for its gain Kk and covariance Pk are
given by

Kk = Pk(I− γ−2IPk +HT
k R−1

k HkPk)−1 (9)

Pk+1 = FkPk(I− γ−2IPk +HT
k R−1

k HkPk)−1FT
k +Qk(10)

I is an identity matrix with an appropriate dimension and
the other variables has been explained before. Stated above,
HF depends on the covariance matrix of error signals, Q k ≥
0,Rk ≥ 0 which are chosen and designed to achieve a desired
performance. It is observable that, if γ values become bigger,
these equation approximating (7),(8) of KF.

IV. MAIN RESULTS

We begin the convergence analysis of HF by presenting
the filter algorithm as stated below. The solution of an HF
problem is as following[7]. Given that P0 ≥ 0.

Pk+1 = FkPkψ−1
k FT

k +GkQkG
T
k , P0 = Σ0 (11)

ψk = I +(HT
k R−1

k Hk − γ−2I)Pk (12)

where I is an identity matrix with an appropriate dimension.
Equation (11), (12) holds a Positive Semidefinite(PsD) solu-
tion if it satisfies

P̂−1
k − γ−2I ≥ 0, k = 0,1, . . . ,N, (13)

where
P̂k = (P−1

k −HT
k R−1

k Hk) ≥ 0 (14)

For γ > 0, the suboptimal HF is given by below equations.

x̂k+1 = Fkx̂k (15)

x̂k = x̂k−1 +Kk[yk −Hkx̂k−1], x̂0|−1 = x̄0 (16)

Kk = PkHk(HkPkHT
k +Rk)−1 (17)

From above, x̂k is the estimated state, and x̄0 is the initial
state with an initial state covariance, P0.

Assumption 3: (Fk,Hk) is observable and (Fk,Gk) is con-
trollable.

Lemma 1: For P0 ≥ 0, (11) is a PsD matrix if and only if
Rk ≤ γ2.

Proof: For convenience, a 1-D monobot, a robot with
a single coordinate system, observing one landmark case is
considered. Given that the initial covariance matrix, P0

P0 =
[
PR 0
0 Pm

]
(18)

where PR is the monobot state covariance and Pm is a
landmark state covariance. If γ 2 ≥ Rk then (12) always
exhibit a PsD matrix. This can be proven as follows. Note
that for 1-D monobot case, the measurement matrix becomes
H = [−1 1].

HT
k R−1

k Hk − γ−2I =
[
R−1

k − γ−2 R−1
k

R−1
k R−1

k − γ−2

]
≥ 0 (19)

If else, (19) exhibit negative definite matrix or indefinite
matrix and therefore causing unreliable estimation to HF.

Even though Lemma 1 is simplistic and illustrates the
results of a monobot case, these result can reasonably aid
the analysis for more complex system of 2D and 3D systems
due to (11), (12) are acting as the main algorithm for HF.
This is proven in the experimental results that are shown in
later section. We proposed some other conditions for HF in
SLAM in the following theorem.

Theorem 1: Assume that Assumptions 1∼2 are satisfied.
For γ > 0, the map uncertainties are gradually decrease if
the following conditions are satisfied.

1) Equation (14) is also a PsD if the the measurement
covariance noise, R is bigger than the state covariance
matrix, P

2) γ−2 must be less than (14)
3) HT

k R−1
k Hk − γ−2I ≥ 0

4) Lemma 1 is satisfied
Else, the state covariance matrix is not decreasing or may
exhibit Finite Escape Time shown by[13].

Proof: Let the initial state covariance matrix, P0 ≥ 0, the
process noise, Qk ≥ 0 and the measurement noise, Rk ≥ 0. To
ensure the state covariance matrix converge, there are some
conditions to be satisfied. First, for γ > 0, (14) is also a PsD
if the measurement covariance noise, R is bigger than the
state covariance matrix, P. Second, in order to realize (13),
γ−2 must be less than (14). Next, it is understood that, if



previous condition is satisfied, then H T
k R−1

k Hk − γ−2I ≥ 0.
Finally for γ2 > Rk, (12) result in PsD matrix. These four
conditions must be fulfilled to achieve convergence of the
state covariance matrix. If those conditions are satisfied, then
from (10), the state covariance matrix P, yield the following.
Let Wk = HT

k R−1
k Hk − γ−2I ≥ 0.

Pk+1 = [P−1
k +Wk]−1 ≥ 0 (20)

Pk+2 = [P−1
k+1 +Wk+1]−1 (21)

= [[P−1
k +Wk]−1 +Wk+1]−1 (22)

≤ Pk+1 (23)

From the PsD properties, any submatrix of a PsD is also
a PsD. Hence, the submatrix of the landmarks components
also hold the same characteristics.

Pk+1mm ≤ Pkmm (24)

We also found that for a case of the observation noise,
R >> γ , the state covariance matrix exhibit negative definite
matrix or escape in finite time[13]. Therefore, it may result
in unstable estimations.

It is also obvious that for a case of stationary landmarks,
there is no process noise incorporated in the landmarks state’s
estimation. Thus, all the landmark covariance is expected to
be constant through the observations. In other words, it is
expected theoretically in the limit, the landmark covariance
yield

Pk+1mm ≈ Pkmm (25)

Unfortunately, we show that this is not actually describes for
the whole state covariance matrix in the next theorem.

State covariance matrix, Pk is generally a representation
of uncertainties for each state estimation. [3] proposed some
convergence properties for KF-Based SLAM. The results are
then analyzed further in the nonlinear system by [18]. For
HF in linear case SLAM, the convergence properties of a
stationary robot observing landmarks are shown by [12]. We
analyze further those results in SLAM.

Theorem 2: Suppose that Theorem 1 is satisfied. For a
stationary robot observing a stationary landmark m, with
γ > 0, as more n-times(n > 0) observation is made, in the
limit, the whole covariance matrix is converging to

Pn
k+1 =

[
P11 P12

P21 P22

]
(26)

where
P11 = [P−1

vv +n(R−1 − γ−2I)−nR−1(R−1 − γ−2I)−1R−1]−1

P12 = −P11R−1(R−1 − γ−2I)−1

P21 = −(R−1 − γ−2I)−1R−1P11

P22 = (R−1 − γ−2I)−1

+(R−1 − γ−2I)−1R−1P11R−1(R−1 − γ−2I)−1

If P11 exhibit a PsD, then the whole state covariance
is decreasing. If else, the estimation is faulty or exhibit
Finite Escape Time.

Proof: We consider a 2D robot with initial covariance
matrix P0.

P0 =
[
Pvv 0
0 Pmm

]
(27)

Pvv ∈ R
3 and Pmm ∈ R

2 are the robot and landmarks initial
covariance respectively. Assume that the robot is observing
one landmark m at a certain point. From (18), when the
stationary robot is observing m landmarks n times, we
obtained the following equations.

P−1
k+1 = P−1

0 +n(HT
km

R−1
km

Hkm − γ−2I) (28)

= P−1
0 +n

[
R−1

km
− γ−2I R−1

km

R−1
km

R−1
km

− γ−2I

]
(29)

Assume that the initial state covariance matrix for the land-
marks is very big. Then above equation yields

P−1
k+1 =

[
P−1

vv 0
0 P−1

mm

]
+n

[
R−1

km
− γ−2I R−1

km

R−1
km

R−1
km

− γ−2I

]
(30)

Finding the inverse matrix of (30) using the Matrix Inversion
Lemma, yields

Pk+1 =
[
P11 P12

P21 P22

]
(31)

where
P11 = [P−1

vv +n(R−1
km

− γ−2I)−nR−1
km

(R−1
km

− γ−2I)−1R−1
km

]−1

P12 = −P11R−1
km

(R−1
km

− γ−2I)−1

P21 = −(R−1
km

− γ−2I)−1R−1P11

P22 = (R−1
km

− γ−2I)−1

+(R−1
km

− γ−2I)−1R−1
km

P11R−1
km

(R−1
km

− γ−2I)−1

As long as R−1
km

− γ−2I ≥ 0, (29) is a PsD. Furthermore,

R−1
km

− γ−2I ≥ R−1
km

(R−1
km

− γ−2I)−1R−1
km

Rkm(R−1
km

− γ−2I)R ≥ (R−1
km

− γ−2I)−1

Above equation can be verified using PsD properties. Fur-
thermore, from (30) and Lemma 1, it can be notice that for a
case of the observation noise R >> γ 2, the state covariance
matrix may suddenly increase and becomes unbounded. This
is an unexpected behavior in SLAM. Thus, designer must
properly choose an appropriate value to satisfy the proposed
condition and achieve better estimation in HF.
For the KF case, the state covariance is given by

P−1
k+1 = P−1

0 +n(HT
k R−1

k Hk) (32)

= P−1
0 +n

[
R−1 R−1

R−1 R−1

]
(33)

Inverting the above matrix yield

Pn
k+1 =

[
Pvv −Pvv

−Pvv R+Pvv

]
(34)

Observing the fact obtained by Theorem 1, it implicitly
determines that the state covariance matrix for HF is slightly
bigger than KF. The second and third variables on the right
hand of (28), show explicitly the increment of the HF state
covariance matrix. Furthermore, we inspect that (31)[12]
may be a result of Finite Escape Time. To avoid this, the



TABLE I

EXPERIMENTAL PARAMETERS

γ 9
Process noise distribution, Q 1e−6

Observation noise distribution, R
[
0.001∗ I2

]
Random noise observation,R

⎡
⎢⎣

Rθmax = 0.05
Rθmin = −0.05

Rdistancemax = 0.2
Rdistancemin = −0.2

⎤
⎥⎦

Initial Covariance(Case 1)Pvv,Pmm 1e−5, 10000

Initial Covariance(Case 2)Pvv,Pmm 1e−4, 0.001

conditions shown in Theorem 1 required the designer to
choose an appropriate noise energy level and γ to achieve
desired performance. Furthermore, R−1 − γ−2I formulate
how actually γ attempt to reduce the noise effect to the
system. Besides, it proves that in the limit, the landmark state
covariance is larger than the initial condition. Furthermore, it
can be explicitly observed that from (28), if a process noise is
increased, then the γ values also must be increase. Moreover,
this properties can be extend for more landmarks in a case
of a single robot observations.

V. EXPERIMENTAL RESULTS

This section evaluates the proposed theorems in an in-
door environment. The experimental environment is shown
in Fig.3, which consists of an E-puck robot with limited
range sensing with some available landmarks in a small
environment. E-puck movement and its observations about
the landmarks between KF and HF are analyzed by Matlab
via dSpace. We use a camera sensor as a virtual sensor to
evaluate the performance between HF and KF. The param-
eters are chosen such that can satisfy Theorem 1 for each
P0,Qk,Rk and γ . The selection can be best obtain by first
satisfying γ >> Rk and then followed by the other variables.
We made an assumption as stated below for the experiment
to ensure that the characteristics and consistency are proved
the convergence theorems.

Assumption 4: Robot is in planar world. Moreover land-
marks stationary and consists of point landmarks

For the zero mean gaussian case, there are no big dif-
ferences between EKF and HF estimations. Both filters can
fairly estimate the robot path and landmarks location as seen
on Fig.4. Both estimations show familiar results and capable
of building the map although HF shows a slightly higher
covariances than KF. In gaussian noise case, KF achieved
better result than HF. Nevertheless, HF is proved to be useful
for SLAM problem and can support the theoretical analysis
in previous section.

Both Figs.6-7 demonstrates the results of applying case
2 of different initial covariance into the system(bigger ini-
tial covariance with random noise observation). Both filters
shows diverse estimations. But it is observable HF perform
better in this case. KF estimation is erroneous even though
the landmark initial covariance is small. Even though in Fig.7
HF covariance is bigger than KF, this result proves that HF is

Fig. 3. Indoor experimental environment
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Fig. 4. Constructed map under zero mean Gaussian noises

converging thus proves Theorem 2 and more robust than KF
for robot with bigger uncertainties and under non-gaussian
noise environment. We inspect that HF is preferred for an
environment that has an unknown noise characteristics than
KF. An investigation for Lemma 1 and Theorem 1 are also
required. In the case of γ 2 << R, HF estimation is erro-
neous(Fig.8). Thus, inherently causing unreliable estimations
of both robot and landmarks location. Therefore unlike KF,
in HF, γ2 >> R must be satisfied to achieve a desired results
and performance.

We summarized that HF is appropriate to be applied
in a system where model changes unpredictably and has
an unknown properties. Furthermore, HF is suitable when
the noises are known in some bounded energy. We has
described in the proposed theorems that γ will be bigger if
the measurement and process noise is bigger. Unfortunately,
HF is more complicated than KF and the designer must
carefully choose the noise parameters and initial covariance.

VI. CONCLUSIONS

HF may need further improvement and development to
achieve more stable and motivating results in SLAM. Even
so, HF is capable to approximate linear and non-linear
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system that has wide coverage and variety of noise and
has proven to be useful for SLAM problem especially for
bigger initial state covariance in an unknown noise statistics.
However, the designer should consider appropriate level of
weighting noises of Q, and R to achieve certain level of
performance as HF is more sensitive and complicated to the
design parameters.
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