
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.8 AUGUST 2008
2025

PAPER Special Section on Signal Processing

A 158 MS/s JPEG 2000 Codec with a Bit-Plane and Pass Parallel
Embedded Block Coder for Low Delay Image Transmission∗

Masayuki MIYAMA†a), Member, Yuusuke INOIE†, Takafumi KASUGA†, Ryouichi INADA†, Student Members,
Masashi NAKAO††, and Yoshio MATSUDA†, Members

SUMMARY This paper describes a 158 MS/s JPEG 2000 codec with
an embedded block coder (EBC) based on bit-plane and pass-parallel ar-
chitecture. The EBC contains bit-plane coders (BPCs) corresponding to
each bit-plane in a code-block. The upper and the lower bit-plane coding
overlap in time with a 1-stripe and 1-column gap. The bit-modeling passes
in the bit-plane coding also overlap in time with the same gap. These meth-
ods increase throughput by 30 times in comparison with the conventional.
In addition, the methods support not only vertically causal mode, but also
regular mode, which enhances the image quality. Furthermore, speculative
decoding is adopted to increase throughput. This codec LSI was designed
using 0.18 μm process. The core area is 4.7× 4.7 mm2 and the frequency is
160 MHz. A system including the codec enables image transmission of PC
desktop with 8 ms delay.
key words: JPEG 2000, EBCOT, VLSI, low delay, image transmission

1. Introduction

JPEG 2000 is an image compression standard, featuring that
high compression ratio and high-quality imaging with little
block noise [1], [2]. Another feature is low delay of video
coding. Video coding delay of JPEG 2000 is lower than that
of the methods dedicated to video compression using large
buffers for rate control and bi-directional motion compensa-
tion. In addition, SNR scalability of JPEG 2000 enables to
control image quality within a limited bandwidth. Thus the
JPEG 2000 is used for video coding as well as still image
coding.

Encoding with JPEG 2000 starts with discrete wavelet
transform (DWT), followed by quantization and embedded
block coding with optimized truncation (EBCOT), as shown
in Fig. 1. The DWT decomposes a tile image into wavelet
sub-bands. The wavelet coefficients in each sub-band are
scalar quantized. After quantization, a sub-band is divided
into several code-blocks. The embedded block coding in-
cludes bit-modeling and context-adaptive arithmetic coding
for each code-block and forms a bit-stream. The bit-streams
are truncated to minimize the overall distortion within a
given target bit rate.

In the embedded block coding, a code-block is decom-

Manuscript received December 10, 2007.
Manuscript revised March 14, 2008.
†The authors are with Kanazawa University, Kanazawa-shi,

920-1192 Japan.
††The author is with EIZO Nanao Co., Hakusan-shi, 924-8566

Japan.
∗Part of this manuscript is first published in Proceedings of

26th Picture Coding Symposium in 2007, published by EURASIP.
a) E-mail: miyama@t.kanazawa-u.ac.jp

DOI: 10.1093/ietfec/e91–a.8.2025

Fig. 1 JPEG 2000 overview.

posed into several bit-planes. A code-block is coded from
the most to the least significant bit-plane sequentially. A bit-
plane coding is divisible into 3 passes. Each pass encodes
or decodes all bits in the bit-plane bit by bit sequentially.
Thus, the embedded block coding is originally a bit-serial,
time-consuming task. A high-performance EBC architec-
ture is necessary to develop a high-throughput JPEG 2000
codec.

The novel EBC architecture enables encoding and de-
coding of all bit-planes in a code-block in parallel. Three
bit-modeling passes on a bit-plane coding are also executed
in parallel. This architecture supports not only vertically
causal mode but also regular mode, which enhances image
quality. A JPEG 2000 codec LSI with an EBC based on
the architecture achieves 158 M-sample/s throughput. This
LSI can encode and decode not only HD (1920 × 1080,
30 fps, YCbCr 4:2:2, 124 M-sample/s), but also SXGA
(1280 × 1024, 60 fps, YCbCr 4:2:2, 158 M-sample/s) video
in real-time. A system including the codec enables image
transmission of PC desktop with 8 ms delay.

The rest of this paper is organized as follows. Section 2
briefly introduces an EBCOT overview. Section 3 describes
parallel methods of embedded block coding. Section 4 de-
scribes EBC architecture based on the parallel methods.
Section 5 describes a JPEG 2000 codec LSI including the
EBC. Section 6 describes a low delay image transmission
system oriented to PC desktop including our JPEG 2000
codec. Section 7 concludes this paper.

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers



2026
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.8 AUGUST 2008

2. EBCOT Overview

The EBCOT consists of an embedded block coding and a
rate/distortion optimization. In the embedded block coding,
quantized coefficients in each code-block are coded from the
most significant bit-plane to the least significant bit-plane
sequentially, as shown in Fig. 2. Bit modeling produces a
pair of context and decision (CX-D) for each bit on a bit-
plane. Pairs of CX-D are provided to context-adaptive arith-
metic coding. A bit-stream is obtained after arithmetic cod-
ing.

Bit modeling on a bit-plane is divisible into 3 passes:
a significant propagation pass (SP), a magnitude refinement
pass (MR), and a cleanup pass (CU). Processing order of
these passes is as above. Four adjacent rows in a bit-plane
compose one stripe. Stripes in a bit-plane are scanned below
from the top. Four vertically adjacent bits in a stripe com-
poses one column. Columns in a stripe are scanned from left
to right. Four bits in a column are scanned below from the
top.

Each bit on the bit-plane is modeled by one of the three
passes. A pass-decision for each bit depends on signifi-
cance states of eight coefficients surrounding the coefficient
including the bit and the state of itself. The significance
state is defined for each quantized coefficient. A coefficient
is significant after appearance of its first ‘1’ in the code-
block coding. A pair of CX-D corresponding to a coeffi-
cient bit also depends on the nine significant states. In the
regular mode, significant states beyond a stripe boundary
are referred by the pass-decision and the bit-modeling. In
the vertically causal mode, significant states beyond a stripe
boundary are not referred, resulting in a degradation of im-
age quality.

Several EBCOT architectures have been proposed. One
EBCOT architecture proposed in [3] includes two bit-plane
coders, which encode two bit-planes in parallel. The bit-
plane coder executes several bit-modeling passes also in par-
allel. This architecture achieves high throughput in a case
that the numbers of bits processed in each pass are almost
equal. But the numbers of processing bits for each pass in
a bit-plane are not balanced in the usual case. This archi-

Fig. 2 Overview of embedded block coding.

tecture requires an additional buffer, which stores pairs of
CX-D for several bit-planes to increase possibility of paral-
lel processing, between a bit-modeling and MQ coders.

Word-level parallel architecture is proposed in [4],
[5]. This architecture can encode one quantized coefficient
(=one word) in a step. Each bit of a quantized coefficient
can be encoded in parallel because all of the neighbor sig-
nificance states necessary for the current context calcula-
tion are known at encoding. However, each bit of a coef-
ficient cannot be decoded completely in parallel at decod-
ing. To start decoding of a bit, complete decoding of its for-
mer dependent bits is necessary. An additional mechanism
to solve the neighbor dependency is required for decoding.
This architecture supports only the vertically causal mode,
whose neighbor dependency is simpler than that of the reg-
ular mode.

Novel parallel methods of embedded block coding and
its architecture, improving throughput while supporting the
regular mode, are discussed in the later sections.

3. Parallel Embedded Block Coding Methods

3.1 Formulation of Significance State

A significance state σ(m, i, p) and a pass decision
PD(m, i, p) at the i-th bit position on the m-th bit-plane in
a pass p are expressed by following equations:

σ(m, i, p) = ((p == 1)&(σ(m + 1, i, 3)/(NS (m, i)&ν(m, i))))

/((p == 2)&(σ(m, i, 1)))

/((p == 3)&(σ(m, i, 1)/ν(m, i))) (1)

PD(m, i, p) = ((p == 1)&(∼ σ(m + 1, i, 3)&NS (m, i)))

/((p==2)&(σ(m+1, i, 3)))

/((p==3)&(∼ σ(m+1, i, 3)& ∼ NS (m, i))) (2)

NS (m, i)=

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
∑

j∈N(i), j<i

σ(m, j, 1)+
∑

j∈N(i), j>i

σ(m + 1, j, 3)

⎞⎟⎟⎟⎟⎟⎟⎠ ≥ 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (3)

Equation (1) represents a significance state of a coefficient
at the i-th position after scanning of a pass p on the m-th
bit-plane. Equation (2) represents a pass decision about a
pass p at the i-th bit position on the m-th bit-plane.The pass
decision PD(m, i, p) becomes 1 when a bit at the i-th posi-
tion on the m-th bit-plane is modeled by the pass p. Values
1, 2, and 3 of the pass p correspond to the SP, the MR, and
the CU pass, respectively. Neighbor significance NS (m, i) at
the i-th bit position on the m-th bit-plane in Eqs. (1) and (2)
is expressed by Eq. (3). The NS (m, i) becomes 1 when one
or above significant coefficients exist among eight neighbor
coefficients of the i-th coefficient before the SP pass scan-
ning on the m-th bit-plane. The N(i) in Eq. (3) represents
a set of eight neighbor position numbers of the i-th posi-
tion. The number for each position is assigned according
to the scan order in the bit-modeling pass. The ν(m, i) in
Eq. (1) represents a quantized coefficient bit at the i-th bit
position on the m-th bit-plane. The operator notations in the
equations follow those of the C language. Further, context



MIYAMA et al.: 158 MS/s JPEG 2000 CODEC
2027

Fig. 3 Example of significance state transition.

calculation of a bit in a pass requires neighbor eight signif-
icance states. The neighbor states for the former bits in the
scan order must be evaluated after scanning of the current
pass. The later states must be evaluated before scanning of
the current pass.

Figure 3 shows an example of significance state tran-
sition about a 4 × 4 code-block. Quantized coefficients are
shown in Fig. 3(a). Word length of the coefficients is three
bits and the number of bit-planes is three. Bit position num-
bers and the scan order are shown in Fig. 3(b). For simplifi-
cation, one row composes one stripe in this example. State
transition from the CU pass on the 2nd bit-plane to the CU
pass on the 0th bit-plane is shown by matrices from Fig. 3(c)
through Fig. 3(i). Each matrix corresponds to a pass. An
element value of the matrix represents a significance state
evaluated after the pass. Shaded elements represent bits
modeled by the pass. Pass decision and significance state
evaluation for each bit follow Eqs. (1) and (2). Note that the
most significant bit-plane is processed by the CU pass only,
in general.

3.2 Parallel Methods

As shown in Fig. 4, the SP pass for l-th column in the n-th
stripe on the m-th bit-plane is considered first. According to
Eqs. (1) and (2), the bottom bit of the l-th column requires
a significance state of a coefficient, located at the top of the
(l + 1)-th column in the (n + 1)-th stripe and evaluated after
the CU scan on the (m + 1)-th bit-plane, for pass decision
and significance state evaluation. The state is also necessary
for context calculation of the bit. Thus the bit-plane parallel
method overlaps the upper bit-plane coding and the lower
bit-plane coding with one stripe and one column gap. With
this method, all bit-planes are coded in parallel, while sup-

Fig. 4 Bit-plane parallel method.

Fig. 5 Pass parallel method.

porting the regular mode. The coding throughput of a code-
block divisible into M bit-planes improves by M times.

As shown in Fig. 5, the MR pass and the CU pass for
(l − 1)-th column in the (n − 1)-th stripe on the m-th bit-
plane are considered next. The bottom bit of the (l − 1)-th
column requires a significance state of a coefficient, located
at the top of the l-th column in the n-th stripe and eval-
uated after the SP scan on the m-th bit-plane, for context
calculation. Thus the pass parallel method overlaps the bit-
modeling passes with one stripe and one column gap.

The figure also shows the pass-decision method. The
SP pass scans the lower right four bits. The MR pass and
the CU pass scan the upper left four bits. The two passes
can scan the same four bits simultaneously because the MR
pass does not change the significance states. For the eight
scanning bits shown in the figure, pass decision and signifi-
cance state evaluation for each bit can be executed in a step
using Eqs. (1) and (2), if all quantized coefficient bits (ν)
are known before processing. Then only the selected bits
are modeled bit by bit. Only one cycle per one bit is re-
quired with this method. With the conventional method, by
which the pass-decision for each bit is done in each pass sep-
arately, three cycles per one bit are required. This method
improves throughput by three times, while supporting the
regular mode.



2028
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.8 AUGUST 2008

Fig. 6 Example of state transition with the proposed methods.

Fig. 7 Timing diagram of the proposed methods.

Figure 6 shows an example of significance state tran-
sition about the same 4 × 4 code-block in Fig. 3 with the
proposed methods. BPC(m, i, p) in the figure means that the
i-th bit position on the m-th bit-plane is currently scanned
by a pass p. Shaded bits are modeled by the pass. Circled
bits are skipped by the pass. Bit-planes and passes are coded
in parallel. Results with the proposed methods are identical
to those with the sequential method. Note that significance
states in the upper stripe must be referred in the lower stripe
before updating them by the upper pass.

Figure 7 shows a timing diagram with these over-
lap methods compared to that of the conventional method.
These overlap methods increase coding throughput by 3*M
times and reduce the coding latency and data hold time of a
code-block, resulting in smaller code-block and bit-stream
buffers.

3.3 Speculative Decoding

Figure 8 shows a speculative decoding method for a bit pos-

Fig. 8 Speculative decoding.

sibly modeled by the SP pass. In a non-speculative case,
pipeline bubbles occur to wait for complete decoding of the
former bit modeled by the SP pass certainly. With the spec-
ulative method, decoding of a bit, which is assumed to be
modeled by the SP pass, starts before complete decoding
of the former bit. If the former coefficient becomes signif-
icant in the SP pass, the speculation succeeds and pipeline
bubbles are eliminated. Pipeline bubbles occur with unsuc-
cessful speculation; however, the number of bubble cycles
is equal to that of the non-speculative case.

Two successive bits in the same pass are modeled us-
ing another method. Decoding of the later bit starts before
complete decoding of the former bit. The method generates
the later context assuming that the former bit is not signif-
icant. If the former bit becomes significant after decoding,
then the context is modified in an MQ decoder. This method
always eliminates bubble cycles.

4. Embedded Block Coder Architecture

4.1 Embedded Block Coder

An EBC block diagram is shown in Fig. 9. The EBC con-
sists of a code-block buffer (CBB), bit-plane coders (BPC),
and a bit-stream buffer (BSB). The CBB stores quantized
coefficients by the code-block. Each bit-plane in a code-
block is accessible in parallel. The number of BPCs is the
same number of bit-planes in a code-block. Each bit-plane
of the CBB connects two-way to a BPC one by one. The
BSB stores a bit stream for each pass on a bit-plane. The
BSB is divided into areas corresponding to each bit-plane.

Each BPC encodes or decodes the corresponding bit-
plane at a time. At encoding, a sign bit-plane (BPS) sup-
plies sign bits to the uppermost BPC. Each bit-plane sup-
plies quantized coefficient bits to the corresponding BPC. A
first-in-first-out buffer (FIFO) connects an upper BPC to a
lower BPC. The upper BPC sends coefficient states and sign
bits after complete encoding to the lower BPC via the FIFO.
The coefficient state is a coding state including a signifi-
cance state of the coefficient. At decoding, each BPC pro-
vides quantized coefficient bits obtained by decoding to the
corresponding bit-plane. The upper BPC sends coefficient
states and sign bits to the lower BPC via the FIFO. The least



MIYAMA et al.: 158 MS/s JPEG 2000 CODEC
2029

Fig. 9 Block diagram of embedded block coder.

significant BPC provides final sign bits to the BPS. Paral-
lel connections between each BPC and the BPS are avoided
with the FIFO.

Upper bit-plane coding and lower bit-plane coding are
self-synchronized by connecting BPCs with a FIFO and
transferring coefficient states and sign bits from the upper
BPC to the lower BPC via the FIFO. The BPC suspends
coding when the upper BPC is busy and the upper FIFO is
empty. The BPC also suspends coding when the lower BPC
is busy and the lower FIFO is full. Each BPC executes bit-
plane coding in parallel, while keeping the 1-stripe and 1-
column gap. This architecture improves throughput, while
supporting the regular mode.

A synchronization mechanism to access the CBB or the
BSB is described here. Coding of an upper bit-plane always
finishes before coding of a lower bit-plane because of the
significance-state dependency. After a new code-block writ-
ten to a bank from external, the most significant bit-plane
in the bank can be read from internal. After writing a re-
sult corresponding to the least significant bit-plane in a bank
from the internal, the code-block in the bank is legible from
the external. Two state registers shown in Fig. 10 as val9 and
val0, which respectively corresponds to the most significant
and the least significant bit-plans, are necessary to synchro-
nize reading from and writing to the buffer. Each bit of the
register represents state of a bank. The bit value 1 means that
data in the bank is valid. The register value varies according
to the access to the two bit-planes from the internal and the
access to a bank from the external. For example, as shown
in Fig. 10(a), the bp9 starts reading from the bank3 since the
corresponding val9 bit is 1. The bank0 is not accessible from

Fig. 10 Synchronization mechanism for buffer access.

the external since the corresponding val0 bit is 1. As shown
in Fig. 10(b), the bp0 finishes reading from the bank0, and
then the corresponding val0 bit turns to 0. The bank0 is ac-
cessible from the external since the corresponding val9 and
val0 bits are both 0. The external starts writing to the bank0.
As shown in Fig. 10(c), the bp9 finishes reading from the
bank3, and then the corresponding val9 bit turns to 0. The
bp9 can not start reading from the bank0 since the corre-
sponding val9 bit is 0. As shown in Fig. 10(d), the external
finishes writing to the bank0, and then the corresponding
val9 and val0 bits turn to both 1. The bp9 start reading from
the bank0 since the corresponding bit is 1. Thus only two
bits are required for synchronization to access a bank that
includes 10 bit-planes and a sign bit-plane.

4.2 Bit-Plane Coder

Figure 11(a) shows a BPC block diagram. The BPC con-
sists of a PP, a CXD, an MQC, an MQD, a UPD, an SSW,
and an SSB. The BPC encodes or decodes one bit-plane at
a time. At first, the encoding behavior shown in Fig. 11(b)
is explained. The PP is a pre-processor for bit-modeling.
The PP reads coefficient states and sign bits from the SSB
and the U-FIFO, which connects to the upper BPC. The PP
reads quantized coefficient bits from the SSB and the CBB.
The PP decides a pass for each bit, evaluates the coefficient
state for each bit, and sends the neighbor coefficient states,
the neighbor sign bits, and the quantized coefficient bit to
the CXD. The CXD generates a pair of CX-D using the data
from the PP. The MQC receives the pair of CX-D and pro-
duces a bit-stream using context-adaptive arithmetic coding.
The SSW transfers the coefficient states and the sign bits
from the PP to the SSB and the L-FIFO, which connects to
the lower BPC. The SSW also transfers the quantized coeffi-
cient bits from the PP to the SSB. The SSB stores coefficient
states, sign bits and quantized coefficient bits to use them in
the next stripe coding.

The decoding behavior shown in Fig. 11(c) is explained
next. The PP behaves as the same manner at encoding, but
neither reads the quantized coefficient bits from the CBB,
nor evaluates the coefficient state for each bit, nor sends the



2030
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.8 AUGUST 2008

Fig. 11 Block diagram of bit-plane coder.

quantized coefficient bit to the CXD. The UPD evaluates
and updates the coefficient states and the sign bits using de-
cisions decoded by the MQD. The CXD generates a context
using the original data from the PP and the updated data
from the UPD. The MQD produces a decision using a bit-
stream from the BSB and the context from the CXD. At the
SSW, the original coefficient states and the original sign bits
provided by the PP are overwritten using the decisions pro-
vided by the MQD. The SSW writes the overwritten data to
the SSB and the L-FIFO. The SSW converts the decisions
into quantized coefficient bits and writes them to the CBB.

At decoding, the PP speculatively decides to model a
bit by the SP pass before complete decoding of the former
bit, which is modeled by the SP pass certainly. The MQD
decodes the bit if the former state becomes significant after
decoding. In the successful situation, the MQD sends deci-
sions to the SSW, and the SSW writes the overwritten data
to the SSB. If the former state does not become significant
after decoding, the MQD does not decode the bit. In the
unsuccessful situation, the MQD informs the SSW that the
bit is not modeled by the SP pass, and the SSW writes the
original data to the SSB.

When two successive bits in the same pass are decoded,
the CXD generates the later context assuming the former bit
is not significant before complete decoding of the former
bit. The CXD informs the MQD that the later bit is modeled
with the assumption. The MQD modifies the later context
if the former state becomes significant. This method sim-
plifies the MQD logic comparing with that of the method
generating the true context again from the neighbor signifi-

Fig. 12 Data-flow diagram of bit-plane coder.

cance states. Re-calculation of the context and the MQ de-
coding can be included in the same pipeline stage; thereby,
the decode pipeline dose not stall.

Figure 12 shows the BPC data flow in detail. The upper
BPC sends four coefficient states and four sign bits located
in the (l+1)-th column of the (n+1)-th stripe on the (m+1)-
th bit-plane after the CU scan (denoted as CUm+1,n+1,l+1) via
the U-FIFO to the PP. The CBB sends four quantized coeffi-
cient bits located in the (l+1)-th column of the n-th stripe on
the m-th bit-plane (denoted as BITm,n,l+1) to the PP. The SSB
sends CUm+1,n,l+1, S Pm,n−1,l+1, CUm,n−2,l+1 and BITm,n−1,l+1

to the PP. The PP executes the SP pass for four bits lo-
cated in the l-th column of n-th stripe on the m-th bit-plane
using CUm+1,n+1,l−1∼l+1, CUm+1,n,l−1∼l+1, S Pm,n−1,l−1∼l+1 and
BITm,n,l. At the same time, the PP executes the MR pass and
the CU pass for four bits located in the (l − 1)-th column of
the (n − 1)-th stripe on the m-th bit-plane using S Pm,n,l−2∼l,
S Pm,n−1,l−2∼l, CUm,n−2,l−2∼l and BITm,n−1,l−1. According to
Eq. (2), the MR pass and the CU pass require the signifi-
cance states evaluated before the SP scan for the pass deci-
sions. The MR pass and the CU pass can decide each pass
using the significance states evaluated after the SP scan, by
transforming Eq. (2) as follows:

PD1(m, i)=PD(m, i, 1)=∼σ(m+1, i, 3)&NS (m, i) (4)

PD2(m, i) = PD(m, i, 2) = σ(m + 1, i, 3)

=∼ PD1(m, i)&σ(m, i, 1) (5)

PD3(m, i) = PD(m, i, 3) = σ(m + 1, i, 3)& ∼ NS (m, i)

=∼ PD1(m, i)& ∼ σ(m, i, 1). (6)

The PP sends CUm+1,n+1,l−2, S Pm,n,l−2, CUm,n−1,l−2 and
BITm,n,l−2 to the SSW. The SSW sends CUm,n−1,l−2 to the
lower BPC via the L-FIFO to use them on the (m − 1)-th
bit-plane coding. The SSW sends CUm+1,n+1,l−2, S Pm,n,l−2,



MIYAMA et al.: 158 MS/s JPEG 2000 CODEC
2031

CUm,n−1,l−2 and BITm,n,l−2 to the SSB to use them in the SP
pass for the (n+ 1)-th stripe, the MR pass for the n-th stripe,
and the CU pass for the n-th stripe. The data over four
stripes indicated in Fig. 12(b), which are necessary for the
pass parallel processing on the m-th bit-plane, are provided
by the mechanism as above. The proposed BPC architecture
executes the three passes in parallel and improves through-
put by three times, while supporting the regular mode.

With a conventional method, three bits represents a co-
efficient state, which is composed of a significance bit, a
visited once bit, and an MR coded bit [6]. With our method,
the coefficient state is represented by two bits instead of the
three bits. State 0 represents that the coefficient is not sig-
nificant. State 1 represents that the coefficient is significant
and the corresponding bit has not been scanned by the MR
pass in the same bit-plane on which the coefficient becomes
significant in the SP pass. State 2 represents that the coef-
ficient is significant and the corresponding bit has not been
modeled by the first MR pass. State 3 represents that the
coefficient is significant and the corresponding bit has been
modeled by the first MR pass. The PD1 in Eqs. (5) and (6),
and the first MR pass completion can be evaluated with this
method. Moreover, the SSB stores coefficient states, sign
bits, and quantized coefficient bits for only three stripes, not
for all stripes, on a bit-plane. These methods reduce the SSB
capacity.

5. JPEG 2000 Codec LSI

Figure 13 shows a JPEG 2000 codec block diagram. The
circuit contains a VIOIF, an ITRAN, an EBC, and a CPUIF.
The ITRAN contains a CCNV, an LB, a DWT, a WB, and
a Q. The CCNV is an RGB–YCbCr color converter. The
DWT executes DWT or inverse DWT. The Q executes quan-
tization or inverse quantization. These circuits are reconfig-
urable and can operate in both directions, resulting in gate
reduction. The EBC executes embedded block coding and
distortion calculation. In addition to the JPEG 2000 rate-
distortion optimization within a tile, an external controller
progressively enhances image quality of a whole frame be-
yond tile boundaries within a limited bandwidth. The JPEG
2000 codec achieves throughput of one sample per clock cy-
cle.

The JPEG 2000 codec LSI was designed using 0.18 μm
process. Table 1 shows the LSI specification. Figure 14
shows a plot diagram of the codec LSI. The estimated op-
erating frequency and power consumption of the codec are
160 MHz and 1.5 W, respectively.

6. Image Transmission System

Video compression technique for image transmission such
as MPEG-2 or H.264 achieves high compression ratio.
However its delay is large due to large buffers for rate con-
trol and bi-directional motion compensation. Large delay is
a disadvantage in the case of interactive image transmission
such as PC desktop. We propose a novel image transmission

Fig. 13 Block diagram of JPEG 2000 codec.

Table 1 Specification of JPEG 2000 codec.

Fig. 14 Plot diagram of JPEG 2000 codec.



2032
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.8 AUGUST 2008

Fig. 15 Proposed method of image transmission.

Fig. 16 Example of image transmission with proposed method.

method characterized by low delay and high quality within
a limited bandwidth [7]. Figure 15 shows an image trans-
mission method with ADD method and JPEG 2000. The
ADD method consists of a tile separation and an enhanced
progressive control. The tile separation divides a frame
into tiles and finds tiles updated from the previous frame.
Only the updated tiles are encoded with the JPEG 2000 en-
coder. The enhanced progressive control generates JPEG
2000 packets from bit-streams provided by the JPEG 2000
encoder. The controller sorts packets in the order accord-
ing to the contribution toward the image quality of a whole
frame beyond tile boundaries. Independent application of
JPEG 2000 R/D optimization to the image quality control
of a whole flame is not sufficient because its optimization is
within a tile. Then packets are sent to the receiver in the de-
termined order. The receiver decodes coded data with JPEG
2000 decoder and displays the frame.

Figure 16 shows an example of image transmission ori-
ented to PC desktop. Figure 16(a) shows change of image
on a PC display from time 1 to time 5. Figure 16(b) rep-
resents relation between transmitted data size and time. At
time 1, image changes extensively and the data size is large
beyond the bandwidth. All packets generated at time 1 can-
not be transmitted in time 1 within a limited bandwidth. The
enhanced progressive controller determines transmission or-
der of the packets. The packets with higher contribution to

Fig. 17 Simulation results.

a frame quality are transmitted at time 1 immediately. The
packets with lower contribution are transmitted from time 2
to time 5 using the remaining space of the bandwidth, result-
ing in upgrade of image quality progressively. The proposed
method achieves both low delay and high quality of image.

We examined the proposed method comparing with
MPEG-2 by simulation. A sequence of PC desktop im-
ages (SXGA 1280× 1024, 60 fps, YCbCr 4:2:2) including a
VGA 30 fps video window overlaid on a web browser win-
dow was simulated as a test sequence. Note that the se-
quence is intended for typical PC desktop, not a full video
of the SXGA 60 fps resolution. Figure 17(a) represents a re-
lation between PSNR and the frame number. The PSNR of
our method (ycbcr4:2:2-dynamic) exceeds that of MPEG-2
(M = 1, N = 15, YCbCr4:2:0, 35 Mbps) over almost all the
frames. Figure 17(b) represents a relation between file size
and the frame number. The file size of MPEG-2 sometimes
exceeds the bandwidth (35 Mbps), while that of our method
is always within a bandwidth. Those MPEG-2 frames ex-
ceeding a bandwidth are I-frames, resulting in large delay
of transmission. Low delay and high quality of our method



MIYAMA et al.: 158 MS/s JPEG 2000 CODEC
2033

Fig. 18 Block diagram of prototype board.

was confirmed with this simulation.
A relation between our image transmission method and

our JPEG 2000 codec is discussed here. A tile size is dis-
cussed at first. In the ADD method, as the tile size is smaller,
the block noise grows larger. As the tile size is larger, the
data size of transmission grows larger. (Consider only a
mouse cursor moving on a PC display.) The adequate size of
a tile obtained by the simulation is 128 pixels by 128 pixels.
We determine the tile size of the codec in this way. The way
of chip partition is discussed secondly. The enhanced pro-
gressive control is an expansion of the JPEG 2000 R/D opti-
mization. Independent implementation of these controllers
is inefficient. We assign distortion calculation for each cod-
ing pass to the JPEG 2000 codec. We assign the JPEG 2000
R/D optimization, which use the distortion to form packets,
to the enhanced progressive controller. The third is a coding
performance of the codec. The proposed method is oriented
to image transmission of PC desktop. Our codec can han-
dle SXGA 60 fps video, which is typical resolution for PC
desktop, in real-time. In addition, low latency of the EBC
architecture contributes to that of the system.

A prototype board of the image transmission system
with the ADD method and JPEG 2000 was developed us-
ing FPGAs [8]. Figure 18 depicts the block diagram of the
board. This hardware consists of three FPGAs. The JPEG
2000 codec is implemented on the FPGA2 and the FPGA3.
The enhanced progressive controller is implemented on the
FPGA1. We did an experiment of the image transmission
system for PC desktop connecting the two boards together,
and 8 ms delay from input to output of the system was
obtained with the experiment. One frame corresponds to
16.7 ms at 60 fps, thus the 8 ms delay is short enough for the
application.

7. Conclusion

This paper presented a JPEG 2000 codec LSI with an em-
bedded block coder based on a bit-plane and pass-parallel
architecture. An upper bit-plane and a lower bit-plane cod-
ing overlap in time with 1-stripe and 1-column gap. Bit-
modeling passes also overlap in time with the same gap.

These methods support not only the vertically causal mode
but also the regular mode to enhance image quality, while
providing short latency and high throughput of embedded
block coding. Furthermore, speculative decoding is used to
increase the throughput. The codec was implemented with
0.18 μm process. The core area is 4.7×4.7 mm2 and the esti-
mated frequency is 160 MHz. The codec achieves 158 MS/s
throughput and was applied to image transmission system
oriented to PC desktop with both low delay and high image
quality. Quality improvement of the system for full video is
a future work.

Acknowledgments

This work is supported by VLSI Design and Education Cen-
ter (VDEC), the University of Tokyo in collaboration with
Cadence Design Systems, Inc. and Synopsys, Inc.

References

[1] “Information technology; JPEG 2000 image coding system — Part 1:
Core coding system,” ISO/IEC 15444-1, Aug. 2000.

[2] T. Acharya and P.-S. Tsai, JPEG2000 Standard for Image Compres-
sion, Wiley-Interscience, 2004.

[3] H. Yamauchi, S. Okada, K. Taketa, and T. Ohyama, “A single-chip
JPEG 2000 encode processor capable of compressing D1-Images at
30 frame/s without tile division,” IEICE Trans. Electron., vol.E87-C,
no.4, pp.448–456, April 2004.

[4] H.-C. Fang, Y.-W. Chang, T.-C. Wang, C.-J. Lian, and L.-G. Chen,
“Parallel embedded block coding architecture for JPEG 2000,” IEEE
Trans. Circuits Syst. Video Technol., vol.15, no.9, pp.1086–1097,
Sept. 2005.

[5] Y.-W. Chang, C.-C. Cheng, C.-C. Chen, H.-C. Fang, and L.-G. Chen,
“124 MSamples/s pixel-pipelined motion-JPEG 2000 codec without
tile memory,” IEEE Trans. Circuits Syst. Video Technol., vol.17, no.4,
pp.398–406, April 2007.

[6] K. Andra, C. Chakrabarti, and T. Acharya, “A high-performance
JPEG2000 architecture,” IEEE Trans. Circuits Syst. Video Technol.,
vol.13, no.3, pp.209–218, March 2003.

[7] M. Nakao, M. Kita, and M. Miyama, “High quality image com-
pression system for low delay and real-time wireless transmission,”
SID2006, June 2006.

[8] M. Nakao, M. Kita, and T. Matsui, “Low delay and real-time image
transmission hardware for remote desktop,” SID2007, June 2007.

Masayuki Miyama was born on March
26, 1966. He received a B.S. degree in Com-
puter Science from the University of Tsukuba in
1988. He joined PFU Ltd. in 1988. He received
an M.S. degree in Computer Science from the
Japan Advanced Institute of Science and Tech-
nology in 1995. He joined Innotech Co. in 1996.
He received a Ph.D. degree in electrical engi-
neering and computer science from Kanazawa
University in 2004. He is an assistant profes-
sor at Kanazawa University Graduate School of

Science and Technology. His present research focus is VLSI designs for
real-time image processing.



2034
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.8 AUGUST 2008

Yuusuke Inoie was born in Ishikawa, Japan,
in 1983. In 2006, he received the B.S. degree in
Department of Electrical and Electronic Engi-
neering from Kanazawa University, where he is
currently working toward the M.S. degree in Di-
vision of Electrical and Computer Engineering.
His research interests include algorithms and ar-
chitecture for embedded block coding with op-
timized truncation (EBCOT), and related VLSI
designs.

Takafumi Kasuga was born in Nagano,
Japan, in 1983. In 2006, he received the B.S.
degree in Department of Electrical and Elec-
tronic Engineering from Kanazawa University,
where he is currently working toward the M.S.
degree in Division of Electrical and Computer
Engineering. His research interests include al-
gorithms and architecture for discrete wavelet
transform (DWT), and related VLSI designs.

Ryouichi Inada was born in Fukui, Japan,
in 1984. In 2007, he received the B.S. degree in
Department of Electrical and Electronic Engi-
neering from Kanazawa University, where he is
currently working toward the M.S. degree in Di-
vision of Electrical and Computer Engineering.
His research interests include algorithms and ar-
chitecture for embedded block coding with op-
timized truncation (EBCOT), and related VLSI
designs.

Masashi Nakao received the master degree
in Physical Electronics from Tokyo Institute of
Technology in 2002. After then, he is with Eizo
Nanao Corporation to research and develop im-
age processing and digital integrated circuit.

Yoshio Matsuda was born in Ehime, Japan,
on October 26, 1954. He received the B.S.
degree in physics and the M.S. and Ph.D. de-
grees in applied physics from Osaka University
in 1977, 1979, and 1983, respectively. He joined
the LSI Laboratory, Mitsubishi Electric Corpo-
ration, Itami, Japan, in 1985. He was engaged in
development of DRAM, advance CMOS logic,
and high frequency devices and circuits of com-
pound semiconductors. Since 2005, he has been
a professor of Graduate School of Natural Sci-

ence and Technology at Kanazawa University, Japan. His research is in the
fields of integrated circuits design where his interests have includes multi-
media systems, low power SoCs, and image compression processors.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


