# A distortion free learning algorithm for feed-forward BSS with convolutive mixture and multi-channel signal sources

| メタデータ | 言語: eng                          |
|-------|----------------------------------|
|       | 出版者:                             |
|       | 公開日: 2017-10-03                  |
|       | キーワード (Ja):                      |
|       | キーワード (En):                      |
|       | 作成者:                             |
|       | メールアドレス:                         |
|       | 所属:                              |
| URL   | http://hdl.handle.net/2297/18403 |

## 畳み込み混合過程の伝達遅延に基づく BSS の信号源分離性能解析

堀田 明秀† 中山 謙二† 平野 晃宏†

† 金沢大学自然科学研究科電子情報科学専攻 〒 920-1192 石川県金沢市角間町 E-mail: †horita@leo.ec.t.kanazawa-u.ac.jp, ††{nakayama,hirano}@t.kanazawa-u.ac.jp

**あらまし** ブラインドソースセパレーション (BSS) において現在,フィードフォーワード形 (FF-) とフィードバック 形 (FB-) という 2 つの回路構造が提案されている.FF-BSS では自由度が存在するため信号歪みが生じる可能性があ る.一方,FB-BSS は本質的に信号歪みを発生しにくい構造であるが,信号源からセンサーまでの遅延時間に条件が 課せられる.この観点から,FF-BSS と FB-BSS の信号源分離性能についていろいろな条件下で解析と比較を行い, 各々が有効に適用できる範囲を明らかにした.

キーワード ブラインドソースセパレーション,回路構成,収束性,学習アルゴリズム,畳み込み,遅延時間

## An analysis of source separation performances in BSS based on transmission delays in convolutive mixture

Akihide HORITA<sup>†</sup>, Kenji NAKAYAMA<sup>†</sup>, and Akihiro HIRANO<sup>†</sup>

† Graduate School of Natural Science and Technology, Kanazawa Univ. Kakuma-machi, Kanazawa, 920-1192

E-mail: †horita@leo.ec.t.kanazawa-u.ac.jp, ††{nakayama,hirano}@t.kanazawa-u.ac.jp

**Abstract** Feed-Forward (FF-) and FeedBack (FB-) structures have been proposed for Blind Source Separation (BSS). The FF-BSS systems have some degree of freedom in the solution space, and signal distortion is likely to occur in convolutive mixtures. On the other hand, FB-BSS structure is hard to cause signal distortion. However, the FB-BSS system requires a condition for the transmission delay time in the mixing process. The FF-BSS systems and the FB-BSS system are compared based on the transmission time delay in the mixing process. Even though the FB-BSS can provide good separation performance, there exit some limitations on location of the signal sources and the sensors.

**Key words** Blind source separation, Network structure, Convergence, Learning algorithm, Convolutive, Delay time

### 1. まえがき

雑音除去, エコー除去, 回線等化, 信号の推定や復元といっ た信号処理は近年重要になってきている. しかしいずれの場合 においても, 信号や雑音についての十分な情報が得られない. さらに前もって混合過程や伝達過程を知ることができない. こ のような状況で, 信号の統計的な性質を使って信号を分離す るブラインドソースセパレーション (BSS) はとても重要であ る [1]-[10].

多くの場合,混合過程において畳み込みが生じるため,分離 過程において FIR もしくは IIR フィルタが必要になる. これ まで時間領域や周波数領域においてさまざまな手法が提案され てきた.また,フィードフォーワード形 (FF-) とフィードバッ ク形 (FB-) という2つの回路構造が提案されている. FB-BSS には自由度が存在し,信号歪みが起こる可能性 がある[15]. そのため信号歪み抑制の学習法が提案されてき た[11],[12],[16].

一方,FB-BSS は信号分離の解と無歪みの解が同一であるた め,分離性能が高く,歪みが起き難い[15].しかし,FB-BSS の学習では混合過程の伝達遅延の差にある仮定をおき,それに 基づいてアルゴリズムが形成されているため,その仮定が崩れ ると性能が著しく劣化する[13].そこで本稿では,混合過程の 伝達遅延の差に着目し,FB-BSSとFF-BSSを比較し,それぞ れの有効性について検討を行なう.

## 2. FB-BSS の構成

#### 2.1 回路構成と入出力関係

Jutten アルゴリズムによる回路構成を図1に示す[3]. 混合



図1 FB-BSS の回路構成



図 2 C<sub>21</sub>(z) や C<sub>12</sub>(z) に用いる FIR フィルタ

過程は畳み込みの形をしている.分離回路は図2に示す FIR フィルタを用いる.

信号源  $s_i(n), i = 1, 2, \dots, N$  はインパルス応答が  $h_{ji}(m)$  で ある未知畳み込み混合過程を通って、N 点の  $x_j(n)$  として観測 される.

$$x_j(n) = \sum_{i=1}^{N} \sum_{m=0}^{M_{ji}-1} h_{ji}(m) s_i(n-m)$$
(1)

また、分離過程の出力  $y_j(n)$  は次式で表される.

$$y_j(n) = x_j(n) - \sum_{\substack{k=1\\ \neq j}}^{N} \sum_{l=1}^{L_{jk}-1} c_{jk}(n,l) y_k(n-l)$$
(2)

この関係をベクトルと行列で表すと次のようになる.

$$\boldsymbol{x}(n) = \boldsymbol{H}^T \boldsymbol{s}(n) \tag{3}$$

$$\boldsymbol{y}(n) = \boldsymbol{x}(n) - \boldsymbol{C}^T \tilde{\boldsymbol{y}}(n) \tag{4}$$

$$\boldsymbol{s}(n) = [\boldsymbol{s}_1^T(n), \boldsymbol{s}_2^T(n), \cdots, \boldsymbol{s}_N^T(n)]^T$$

$$s_{i}(n) = [s_{i}(n), s_{i}(n-1), \cdots, s_{i}(n-M_{i}+1)]^{T}$$

$$(6)$$

$$r_{i}(n) = [r_{i}(n), r_{0}(n), \cdots, r_{N}(n)]^{T}$$

$$(7)$$

$$\boldsymbol{x}(n) = [x_1(n), x_2(n), \cdots, x_N(n)]^T$$

$$\boldsymbol{y}(n) = [y_1(n), y_2(n), \cdots, y_N(n)]^T$$
(8)

$$\boldsymbol{y}(n) = [y_1(n), y_2(n), \cdots, y_N(n)]^T$$
(8)

$$oldsymbol{y}(n) = [oldsymbol{y}_1^+(n),oldsymbol{y}_2^+(n),\cdots,oldsymbol{y}_N^+(n)]^T$$

$$\boldsymbol{y}_{k}(n) = [y_{k}(n), y_{k}(n-1), \cdots, y_{k}(n-L_{jk}+1)]$$
(10)

$$H = \begin{vmatrix} h_{11} & h_{21} & \dots & h_{N1} \\ h_{12} & h_{22} & \dots & h_{N2} \\ \vdots & \vdots & \ddots & \vdots \\ h_{1N} & h_{2N} & \dots & h_{NN} \end{vmatrix}$$
(11)

$$\boldsymbol{h}_{ji} = [h_{ji}(0), h_{ji}(1), \cdots, h_{ji}(M_{ji} - 1)]^T$$
(12)

$$C = \begin{vmatrix} 0 & c_{21} & \dots & c_{N1} \\ c_{12} & 0 & \dots & c_{N2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1N} & c_{2N} & \dots & 0 \end{vmatrix}$$
(13)

$$\boldsymbol{c}_{jk} = [c_{jk}(0), c_{jk}(1), \cdots, c_{jk}(L_{jk}-1)]^T$$

 $s_i(n), x_j(n), y_k(n)$ をそれぞれ z 変換したものを  $S_i(z), X_j(z), Y_k(z)$ とすると以下のように表せる.

 $\boldsymbol{X}(z) = \boldsymbol{H}(z)\boldsymbol{S}(z) \tag{15}$ 

$$\boldsymbol{Y}(z) = \boldsymbol{X}(z) - \boldsymbol{C}(z)\boldsymbol{Y}(z)$$
(16)

$$\mathbf{S}(z) = [S_1(z), S_2(z), \cdots, S_N(z)]^T$$
(17)

$$\mathbf{X}(z) = [X_1(z), X_2(z), \cdots, X_N(z)]^T$$
(18)

$$\mathbf{Y}(z) = [Y_1(z), Y_2(z), \cdots, Y_N(z)]^T$$
(19)

$$\boldsymbol{H}(z) = \begin{bmatrix} H_{11}(z) & H_{21}(z) & \dots & H_{N1}(z) \\ H_{12}(z) & H_{22}(z) & \dots & H_{N2}(z) \\ \vdots & \vdots & \ddots & \vdots \\ H_{1N}(z) & H_{2N}(z) & \dots & H_{NN}(z) \end{bmatrix}$$
(20)

$$C(z) = \begin{bmatrix} 0 & C_{21}(z) & \dots & C_{N1}(z) \\ C_{12}(z) & 0 & \dots & C_{N2}(z) \\ \vdots & \vdots & \ddots & \vdots \\ C_{1N}(z) & C_{2N}(z) & \dots & 0 \end{bmatrix}$$
(21)

この表現から信号源と分離過程の出力との関係を以下のように 表せる.

$$Y(z) = (I + C(z))^{-1}X(z)$$
  
=  $(I + C(z))^{-1}H(z)S(z)$  (22)

分離性能を評価するために以下の行列を定義する.

$$\boldsymbol{P}(z) = (\boldsymbol{I} + \boldsymbol{C}(z))^{-1} \boldsymbol{H}(z)$$
(23)

もし P(z) の各行各列に 0 でない要素を一つだけ持つならば信 号源  $s_i(n)$  は出力  $y_k(n)$  に完全に分離されているといえる. し かし, H(z) の等化までは保証しないので分離された信号は次 のような形になる.

$$Y_j(z) = P_{ji}(z)S_i(z) \tag{24}$$

#### 2.2 学習アルゴリズム

(5)

(9)

(14)

各センサが十分に離れている場合,遅延差の関係から因果性 を満たす回路ではセンサに一番近い信号源を削除することが できない.このため出力のパワーを最小化して信号を分離する 方式が提案されている[13].  $c_{jk}(n,l)$ の更新式は次式で与えら れる.

$$c_{jk}(n+1,l) = c_{jk}(n,l) + \Delta c_{jk}(n,l)$$
(25)

$$\Delta c_{jk}(n,l) = \mu f(y_j(n))g(y_k(n-l)) \tag{26}$$

ここで,  $f(y_i(n))$ ,  $g(y_k(n-l))$  は適当な奇関数を用いる.

## 3. FF-BSS の構成

#### 3.1 回路構成と入出力関係

FF-BSSの回路構成を図3に示す. 混合過程は畳み込みの形をしている. 分離回路は図4に示す FIR フィルタを用いる.





図 4  $W_{lk}(z)$  に用いる FIR フィルタ

混合過程は FB-BSS と同様のモデル化を行なっているため観 測信号は式 (1), ベクトルと行列で表したものは式 (3), さらに z 変換したものは式 (15) と表せる.

分離過程の出力  $y_j(n)$  は次式で表される.

$$y_j(n) = \sum_{k=1}^{N} \sum_{l=0}^{L_{jk}-1} w_{jk}(n,l) x_k(n-l)$$
(27)

この関係をベクトルと行列で表すと次のようになる.

$$\boldsymbol{y}(n) = \boldsymbol{W}^T \boldsymbol{x}(n) \tag{28}$$

$$\boldsymbol{x}(n) = [x_1(n), x_2(n), \cdots, x_N(n)]^T$$
 (29)

$$\boldsymbol{y}(n) = [y_1(n), y_2(n), \cdots, y_N(n)]^T$$
 (30)

$$\boldsymbol{W} = \begin{bmatrix} \boldsymbol{w}_{11} & \boldsymbol{w}_{21} & \dots & \boldsymbol{w}_{N1} \\ \boldsymbol{w}_{12} & \boldsymbol{w}_{22} & \dots & \boldsymbol{w}_{N2} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{w}_{1N} & \boldsymbol{w}_{2N} & \dots & \boldsymbol{w}_{NN} \end{bmatrix}$$
(31)

$$\boldsymbol{w}_{jk} = [w_{jk}(0), w_{jk}(1), \cdots, w_{jk}(L_{jk} - 1)]^T$$
(32)

また、この出力を z 変換すると以下のように表現できる.

$$\mathbf{Y}(z) = \mathbf{W}(z)\mathbf{X}(z) \tag{33}$$

$$\mathbf{S}(z) = [S_1(z), S_2(z), \cdots, S_N(z)]^T$$
(34)

$$\mathbf{X}(z) = [X_1(z), X_2(z), \cdots, X_N(z)]^T$$
(35)

$$\mathbf{Y}(z) = [Y_1(z), Y_2(z), \cdots, Y_N(z)]^T$$
(36)

$$\boldsymbol{W}(z) = \begin{bmatrix} W_{11}(z) & W_{12}(z) & \dots & W_{1N}(z) \\ W_{21}(z) & W_{22}(z) & \dots & W_{2N}(z) \\ \vdots & \vdots & \ddots & \vdots \\ W_{N1}(z) & W_{N2}(z) & \dots & W_{NN}(z) \end{bmatrix}$$
(37)

この表現から信号源と分離過程の出力との関係を以下のように 表せる.

$$Y(z) = W(z)X(z)$$
  
= W(z)H(z)S(z) (38)

分離性能を評価するために以下の行列を定義する.

$$\boldsymbol{P}(z) = \boldsymbol{W}(z)\boldsymbol{H}(z) \tag{39}$$

FB-BSSと同様,もし P(z)の各行各列に0でない要素を一つだけ持つならば信号源  $s_i(n)$ は出力  $y_k(n)$ に完全に分離されているといえる.

#### 3.2 学習アルゴリズム

学習には[14] で紹介されている出力の相互情報量を最小化す るアルゴリズムを使用する.  $w_{ij}(n,l)$ の更新式は次式のように なる.

$$w_{ij}(n+1,l) = w_{ij}(n,l) + \Delta w_{ij}(n,l)$$
(40)  
$$\Delta w_{ij}(n,l) = \eta \{ w_{ij}(n,l) - \sum_{q=0}^{L_{ij}-1} \varphi(y_i(n)) y_p(n-l+q) w_{pj}(n,q) \}$$
(p \equiv j) (41)

ただし,  $\varphi(y_j(n))$  は  $y_j$  の確率密度関数である. FF-BSS では 出力信号が歪むという問題があるためそれを改善する信号歪み 抑制学習法が提案されている [16]. この方式では式 (40), (41) で分離を行ったのち分離行列 W(z)の対角要素を以下のように 補正する.

$$w_{jj}(n+1,l) = (1-\alpha)\tilde{w}_{jj}(n+1,l) + \alpha \bar{w}_{jj}(n+1,l)$$
  
(0 < \alpha \le 1) (42)

ここで  $\tilde{w}_{jj}(n+1,l)$  は式 (40), (41) で更新された分離回路,  $\bar{w}_{jj}(n+1,l)$  は以下の完全分離かつ無歪みの条件を満たすよう に決定される値である.

$$W_{jj}(z) = 1 + \boldsymbol{w}_{jx}^{T}(z)\boldsymbol{M}_{jj}^{-1}(z)\boldsymbol{w}_{xj}(z)$$
(43)

$$\boldsymbol{w}_{xj}(z) = [W_{1j}(z), \cdots, W_{yj}(z), \cdots, W_{Nj}(z)]^T$$
 (44)

$$\boldsymbol{w}_{jx}(z) = \left[W_{j1}(z), \cdots, W_{jy}(z), \cdots, W_{jN}(z)\right]^T$$
(45)

ただし,  $M_{jj}(z)$  はW(z)の小行列である.

## 4. FB-BSS における伝搬遅延に関する仮定

簡単化のため2チャンネルにおいて考える.  $H_{11}(z)$ や $H_{22}(z)$ の遅延は $H_{21}(z)$ や $H_{12}(z)$ に比べて短いものとする. これは図 1にあるように $X_1(z)$ のセンサが $S_1(z)$ の近くに, $X_2(z)$ のセ ンサが $S_2(z)$ の近くに配置されていることを意味する. 分離が完全に行なわれるとき, $C_{jk}(z)$ と $y_k(n)$ は次式で表され る2通りの解を持つ.

(a) 
$$C_{21}(z) = \frac{H_{21}(z)}{H_{11}(z)}$$
  $C_{12}(z) = \frac{H_{12}(z)}{H_{22}(z)}$  (46)

$$y_1(n) = \boldsymbol{h}_{11}^T \boldsymbol{s}_1(n) \qquad y_2(n) = \boldsymbol{h}_{22}^T \boldsymbol{s}_2(n)$$
 (47)

(b) 
$$C_{21}(z) = \frac{H_{22}(z)}{H_{12}(z)}$$
  $C_{12}(z) = \frac{H_{11}(z)}{H_{21}(z)}$  (48)

$$y_1(n) = \boldsymbol{h}_{12}^T \boldsymbol{s}_2(n) \qquad y_2(n) = \boldsymbol{h}_{21}^T \boldsymbol{s}_1(n)$$
 (49)

 $H_{ji}(z)$ における伝搬遅延の仮定から (a) の  $C_{21}(z)$ ,  $C_{12}(z)$  は 正の時間遅れを有し,因果性を満たすため実現可能である. 一

方, (b) の *C*<sub>21</sub>(*z*), *C*<sub>12</sub>(*z*) は負の時間遅れ, すなわち時間進み を有し, 因果性を満たさないため, 実現できない. 式 (22) から出力は次のように表せる.

$$\begin{bmatrix} Y_{1}(z) \\ Y_{2}(z) \end{bmatrix} = \frac{1}{1 - C_{12}(z)C_{21}(z)} \begin{bmatrix} 1 & -C_{12}(z) \\ -C_{21}(z) & 1 \end{bmatrix}$$

$$\times \begin{bmatrix} H_{11}(z) & H_{12}(z) \\ H_{21}(z) & H_{22}(z) \end{bmatrix} \begin{bmatrix} S_{1}(z) \\ S_{2}(z) \end{bmatrix}$$
(50)
$$= \frac{1}{1 - C_{12}(z)C_{21}(z)}$$

$$\times \begin{bmatrix} H_{11}(z) - C_{12}(z)H_{21}(z) & H_{12}(z) - C_{12}(z)H_{22}(z) \\ H_{21}(z) - C_{21}(z)H_{11}(z) & H_{22}(z) - C_{21}(z)H_{12}(z) \end{bmatrix}$$

$$\times \begin{bmatrix} S_{1}(z) \\ S_{2}(z) \end{bmatrix}$$
(51)

 $H_{ji}(z), j \neq i$ の伝搬遅延時間は  $H_{ii}(z)$ のものより長いと仮定 しており,  $C_{12}(z) \geq C_{21}(z)$ は正の伝搬遅延時間をもつ因果性 を満たす回路であるため,式 (51)の対角要素は ( $H_{11}(z)$ の伝 搬遅延時間 <  $C_{12}(z)H_{21}(z)$ の伝搬遅延時間)となり,0にな らない.逆に非対角要素は  $C_{12}(z) や C_{21}(z)$ を調整することに よって0になり得る.つまり,出力パワーを最小化するように 分離回路  $C_{12}(z), C_{21}(z)$ を調整することで対角要素を一定の レベルに保ったまま,非対角要素を最小化することができる. すなわち,1つの信号を抽出し,信号を分離することができる.

しかし、センサ間の距離が短い場合など  $H_{ji}(z), j \neq i$  と  $H_{ii}(z)$ の伝搬遅延時間の差が十分でない場合がある。そこで、 シミュレーションにより混合過程の伝搬遅延時間の差と信号分 離の性能の関係を解析する.

## 5. シミュレーション

#### 5.1 シミュレーション条件

2 チャンネル、3 チャンネルで、8kHz サンプリングの信号 源には音声または白色信号を用いた.ただし、白色信号は厳密 には最大周波数 4kHz の帯域制限された信号である.初期値は FF-BSS が  $W_{jj}(z) = 1$  かつ  $W_{kj}(z) = 0, k \neq j$ , FB-BSS が  $C_{kj}(z) = 0, k \neq j$  とした.

また、信号分離の評価には以下の SIR を使用する.

$$\sigma_s^2 = \frac{1}{2\pi} \sum_{i=1}^N \int_{-\pi}^{\pi} |A_{ii}(e^{j\omega})S_i(e^{j\omega})|^2 d\omega$$
 (52)

$$\sigma_i^2 = \frac{1}{2\pi} \sum_{k=1}^N \sum_{\substack{i=1\\ \neq k}}^N \int_{-\pi}^{\pi} |A_{ki}(e^{j\omega})S_i(e^{j\omega})|^2 d\omega$$
(53)

$$SIR = 10 \log_{10} \frac{\sigma_s^2}{\sigma_i^2} \tag{54}$$

これらは値が大きければ大きいほど信号が分離されていること を示す.

5.2 混合過程

図 5 の混合過程で $\tau$ の値を変化させることによって,遅延時間を変化させて遅延時間による性能の変化を調べる.

混合過程 **H**(z) には式 (55), (56) に示す単純に遅延と振幅 の減衰のみのものと実際の音響空間を模して作った伝達関数の 2 通りの混合過程について検討する.



$$\boldsymbol{H}(z) = \begin{bmatrix} 0.9 & 1 \\ 1 & 0.75 & 0.5 \\ 0.75 & 1 & 0.75 \\ 0.5 & 0.75 & 1 \end{bmatrix}$$
(56)

遅延量の変化がセンサ間の距離が変化したことによって引き 起こされたと考えることができる.そこで図6における配置で センサ間 L が変化したものとしてセンサ間 L と分離性能の変 化の関係も検討する.

#### 5.3 性能の比較

5.3.1 2 チャンネルの単純遅延

図7,図8に式(55)の単純遅延の混合過程を用いた時の結果 を示す.図7は信号源が音声,図8は白色信号を用いている. それぞれ,分離性能と同時に観測信号におけるそれぞれの相関 を示してある.

FB-BSS は音声,白色信号ともに遅延時間  $\tau$  が 0 のところ で分離性能が最も悪く,遅延時間  $\tau$  が大きくなるにつれて分離 性能が向上してる.一方,FF-BSS は遅延時間  $\tau$  に関係なく分 離性能がほぼ一定である.FB-BSS では遅延が小さいところで は,消去できないと仮定されている信号が消去されていて分離 性能が低下しているが,遅延が大きくなると仮定が十分満たさ れて性能が改善している.FF-BSS では混合過程の遅延に影響 しないため分離性能が一定である.また,図 7(a),7(b)と図 8(a),8(b)を比較して分かるように音声の方が白色信号に比べ て遅延が大きいところでも相関が高くなっている.FB-BSS の 分離性能はそれに伴い,音声信号の方が白色信号より遅延時間  $\tau$ が大きいところでも性能があまり良くない.これは,遅延が



存在しても信号の相関性によって信号が消去できるため消去で きないと仮定している信号も削除できてしまうためである.し たがって相関が小さくなるにつれて分離性能が向上していった ものと考えられる.ここで、白色信号の相関が遅延時間 τ が 0 のところ以外でも値を持ってるのは最大周波数が4kHzに帯域 制限されているためである.また、白色信号に対して遅延時間 がn×125µsのとき高い分離性能が得られているのは、信号の 相関が0であることに加え,遅延サンプルが整数サンプルにな るため逆特性をディジタルシステムで生成できるために正確な 逆特性を生成できるためであると考えられる.

図 9,10 に単純遅延における遅延が図 6 の音響空間でセンサ 間Lの変化によって起きたものと仮定し、FF-BSSとFB-BSS の分離性能の比較を示す.

これらの図において信号源が音声のとき FF-BSS と FB-BSS の性能が同じになるのは 4.26cm のときであり、白色信号のと きは 11.7cm のときである. つまり, 音源の間が 1.3m, センサ と音源が1.8m である状況を想定して設計されるシステムでは 音源に音声を用いた場合には4.26cm 以上, 白色信号を用いた ときは 11.7cm 以上で, FB-BSS が, 逆にそれ以下では FF-BSS を用いた方がよいことになる.

**5.3.2** 2 チャンネルの音響空間を模した伝達関数 図 11, 12 に実際の音響空間を模した伝達関数を使用した際



図 9 音声を用いた単純混合にお 図 10 白色信号を用いた単純混合 けるセンサ間の変化による 信号分離性能の変化



におけるセンサ間の変化に よる信号分離性能の変化



信号分離性能の変化 よる信号分離性能の変化 図 11 音声における FF-BSS と 図 12 白色信号における FF-BSS FB-BSS の性能比較 と FB-BSS の性能比較

の,結果を示す.図11は信号源が音声,図12は白色信号を用 いている. それぞれ, 分離性能と同時に観測信号におけるそれ ぞれの相関を示してある.

単純遅延のときと同様の傾向が出ている. 信号の相関は複雑 な伝達関数を通っているため単純遅延のときのように信号の特 性がはっきりとは現れていないが、白色信号に比べ音声は遅延 時間 r が大きいところまで相関の値が高い.また,それに伴っ て FB-BSS の分離性能も τ が大きいところまで劣化している.

図 13, 14 に混合過程が実際の音響空間を模した伝達関数を 使用した時の結果に関して遅延 r が図 6 の音響空間でセンサ間 Lの変化によって起きたものと仮定し、FF-BSSとFB-BSSの 分離性能の比較を示す.

これらの図において信号源が音声のとき FF-BSS と FB-BSS



の性能が同じになるのは 10.6cm のときであり, 白色信号のと きは 8.09cm のときである. つまり, 音源の間が 1.3m, センサ と音源が 1.8m である状況を想定して設計されるシステムでは 音源に音声を用いた場合には 10.6cm 以上, 白色信号を用いた ときは 8.09cm 以上で, FB-BSS が, 逆にそれ以下では FF-BSS を用いた方がよいことになる. これらの値は先ほどの単純遅延 のときと異なっているため混合過程の伝達関数によって変わっ てくるものだと考えられる. いずれにしても, センサ間の距 離が短いところでは FF-BSS が優位であり, 長いところでは FB-BSS が優位である.

5.3.3 3 チャンネルの単純遅延

図 15, 図 16 に式 (56)の単純遅延の混合過程を用いた時の 結果を示す.図 15 は信号源が音声,図 16 は白色信号を用いて いる.

2 チャンネルのときと同様に FB-BSS は音声,白色信号とも に遅延時間  $\tau$  が 0 のところで分離性能が最も悪く,遅延時間  $\tau$ が大きくなるにつれて分離性能が向上してる.一方,FF-BSS は遅延時間  $\tau$  に関係なく分離性能がほぼ一定である.FF-BSS では混合過程の遅延に影響しないため分離性能が一定である. これにより 3 チャンネルにおいても FB-BSS は遅延の問題が発 生していることが分かる.

また,音声の方が白色信号に比べて十分な分離性能を得るた めに必要な遅延時間 r が大きい.これは,図には示していな いが音声の方が遅延が大きい部分でも相関性が高く,遅延が存 在しても信号の相関性によって信号が消去できるため消去でき ないと仮定している信号も削除できてしまうためである.した がって相関が小さくなるにつれて分離性能が向上していったも のと考えられる.また,2 チャンネルに比べて分離性能を得る ために必要な遅延時間 r が大きい.これは2 チャンネルに比べ, 学習が難しいためであると考えられる.

### 6. 結 論

時間領域の FB-BSS と FF-BSS を混合過程の伝搬遅延時間 に基づき解析した. FB-BSS の学習法は観測信号における遅延 差を利用しており,センサが十分に離れていない場合には十分 な性能が得られない. FF-BSS については遅延差に関係なく一 定の性能が得られる.したがって,状況に応じて回路を使い分 ける必要がある.

#### 文 献

- C.Jutten, J.Herault and A.Guerin, "IIN.C.A: An independent components analyzer based on an adaptive neuromimetic network", in: J.Degmongeot, T.Herve, V.Raille and C.Roche, eds., Artificial Intelligence and Cognitive Science, Manhester Univ. Press, Manchester, 1988.
- [2] J.F.Cardoso, "Eigen structure of the 4th order cumulant tensor with application to the blind source separation problem", ICASSP Proc. pp. 2655-1658.
- [3] C.Jutten and Jeanny Herault, "Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture", Signal Processing, 24, pp.1-10, 1991.
- [4] P.Comon, C.Jutten and J.Herault, "Blind separation of sources, Part II: Problems statement", Signal Processing, 24, pp.11-20, 1991.
- [5] A.Cichocki, S.Amari, M.Adachi, W.Kasprzak, "Selfadaptive neural networks for blind separation of sources", Proc. ISCAS'96, Atlanta, pp.157-161, 1996.
- [6] S.Amari, T.Chen and A.Cichocki, "Stability analysis of learning algorithms for blind source separation", Neural Networks, vol.10, no.8, pp.1345-1351, 1997.
- [7] K.Nakayama, A.Hirano and M.Nitta, "A constraint learning algorithm for blind source separation", Proc. IJCNN'2000, pp.24-27, July, 2000.
- [8] K,Nakayama, A.Hirano and T.Sakai, "A pair-channel learning algorithm with constraints for multi-channel blind separation", Proc. IJCNN'01, July 2001.
- H.Mathis and S.C.Douglas, "On optimal and universal nonlinearities for blind signal separation", Proc. ICASSP'01, MULT-P3.3, May 2001.
- [10] K.Nakayama, A.Hirano and T.Sakai, "An adaptive nonlinear function controlled by kurtosis for blind source separation", Proc. IJCNN'2002, pp.1234-1239, May 2002.
- [11] K.Matsuoka and S.Nakashima, "Minimal distortion principle for blind source separation," Proc. ICA2001, pp.722-727, 2001.
- [12] N. Murata, S. Ikeda and A. Ziehe, "An approach to blind source separation based on temporal structure of speech signals", Neurocomputing, Vol. 41, pp. 1-24, Oct. 2001.
- [13] K.Nakayama, A.Hirano and A.Horita, "A learning algorithm for convolutive blind source separation with transmission delay constraint", Proc. IJCNN'2002, pp.1287-1292, May 2002.
- [14] H.Saruwatari, T.Takatani, H.Yamajo, T.Sishikawa and K.Shikano, "Blind separation and deconvolution for real convolutive mixture of temporally correlated acoustic signals using SIMO-model-based ICA", ICA'03 pp.549-554 April 2003
- [15] 堀田明秀,出島康宏,中山謙二,平野晃宏,"フィードフォワー ド形及びフィードバック形 BSS の収束性に関する比較",信号 処理研究会,pp.57-62 2004,7
- [16] 堀田明秀,中山謙二,平野晃宏,出島康宏,"多チャネル信号源 と畳み込み混合に対するフィードフォワード形 BSS における信 号歪み抑制学習法",信号処理研究会,pp.17-22 2006,5