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User-Defined On-Demand Matching∗

Masaki NAKAMURA†a), Kazuhiro OGATA††, Members, and Kokichi FUTATSUGI††, Nonmember

SUMMARY We propose a user-defined on-demand matching strategy,
called O-matching, in which users can control the order of matching argu-
ments of each operation symbol. In ordinary matching schemes it is not
important to set the order of matching, however, in on-demand matching
schemes, it is very important since an input term may be changed while
doing the on-demand matching process. O-matching is suitable to combine
with the E-strategy, which is a user-defined reduction strategy in which
users can control the order of reducing arguments. We show a sufficient
condition under which the E-strategy with O-matching is correct for head
normal forms, that is, any reduced term is a head normal form.
key words: the evaluation strategy, lazy evaluation, on-demand matching,
term rewriting

1. Introduction

For a given term rewriting system (TRS), a term may have
more than one redex, which is an instance of the left-hand
side of a rewrite rule, and may be reduced into more than
one term, in general. A reduction strategy is a procedure
to choose one reduced term from the several reduced terms
of a given term. Many reduction strategies have been pro-
posed and discussed [18]–[20]. The evaluation strategy (the
E-strategy) is a user-defined reduction strategy [3]–[6], in
which we can give a different strategy not only for each
TRS but also for each operation symbol in the TRS. The
E-strategy takes a term and returns a reduced term in accor-
dance with local strategies assigned to operation symbols.

Matching is another fundamental procedure for imple-
menting TRSs. When a subterm is chosen as a candidate
of a redex according to a reduction strategy, we will check
whether the subterm can be a redex, that is, an instance of
the left-hand side of a rewrite rule in the TRS. While the
usual matching process is static, that is, it does not change
the subterm, on-demand matching is a more active match-
ing. On-demand matching may reduce a subterm if the sub-
term is an obstacle in the matching process. On-demand
matching is adopted by the functional strategy [18], [20], the
E-strategy with on-demand flags [15], [17] and so on.

We show a typical example for on-demand matching.
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Consider the TRS R whose rewrite rules are

2nd(x; y; z) → y
f rom(x) → x; f rom(s(x))

where x; y; z; · · · is an abbreviation of the term cons(x, cons
(y, cons(z, . . .))). cons represents the list constructor. 2nd
represents a function which takes a list and returns the sec-
ond component of the list. For example, when 2nd takes
[0, 1, 2, 3], it returns 1. From the second rewrite rule, the
term f rom(0) represents the infinite list [0, 1, 2, . . . , n, n +
1, . . .]. Consider the term 2nd( f rom(0)). It is expected to
return s(0) which is the second component of the infinite
list. However, if the TRS is implemented naively, reduction
may not terminate because of an infinite rewrite sequence

2nd( f rom(0))
→R 2nd(0; f rom(s(0)))
→R 2nd(0; s(0); f rom(s(s(0))))
→R 2nd(0; s(0); s(s(0)); f rom(s(s(s(0)))))
→R · · · .

On-demand matching can solve the problem. When
on-demand matching tries to match the target term
2nd( f rom(0)) with the left-hand side 2nd(x; y; z), the sub-
term f rom(0) is expanded until the matching succeeds. The
expansion of f rom(0) terminates with 0; s(0); f rom(s(s(0)))
which is an instance of x; y; z. Then, it is rewritten into s(0)
with the first rewrite rule.

In usual matching schemes, the order of arguments to
be matched does not influence the result of matching. How-
ever, the order of matching becomes very important for on-
demand matching since it may change a target term while
doing the matching process. The motivation of our study is
to give a framework by which we can choose a suitable or-
der of matching for each operation symbol in each TRS. In
this paper, we propose user-defined on-demand matching.
In our on-demand matching framework, we assign a match-
ing list to each operation symbol, and the matching process
is done according to the matching lists, like the reduction
process of the E-strategy. We generalize the notion of the
left-normality, called the ϕ′-normality, and by using the ϕ′-
normality we give a sufficient condition under which any
result term of O-matching is either a redex or a head nor-
mal form. We also propose a combination of the E-strategy
and O-matching, and give a sufficient condition under which
the E-strategy with O-matching is correct for head normal
forms, that is, any reduced term is a head normal form.
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2. Preliminaries

We introduce the fundamentals of the TRS and the E-
strategy according to the literatures [3]–[6], [11], [12], [19].

2.1 Term Rewriting System

A signature Σ is a non-empty set of operation symbols each
of which has its arity: ar( f ) ∈ N for each f ∈ Σ, where N
is the set of all natural numbers. Let V be a countable set of
variables which is disjoint to the signature (Σ∩V = ∅). The
set T (Σ,V) of the terms constructed from Σ and V is defined
as the smallest set satisfying the following: (1) V ⊆ T (Σ,V),
and (2) f (�t) ∈ T (Σ,V) if f ∈ Σ, ar( f ) = n,�t ∈ T (Σ,V).
Here, �t stands for t1, . . . , tn. Hereafter we may use similar
notations. We may use T instead of T (Σ,V). A position of
a given term is referred by a sequence p ∈ N∗+ of positive
integers, where N+ is the set of all positive integers and A∗

is the set of all sequences of A’s elements, where ε stands
for the empty sequence. The set O(t) of the positions of
a term t is defined recursively as follows: O(x) = {ε} and
O( f (�t)) = {ε} ∪ {i.p | 1 ≤ i ≤ ar( f ), p ∈ O(ti)} where
x ∈ V , f ∈ Σ and �t ∈ T . The partial order > on O(t) is
defined as follows: p > q iff p = q.q′ for some non-empty
sequence q′ � ε. A variable or an operation symbol of a
term t ∈ T at a position p ∈ O(t) is denoted by t(p). A
subterm at a position p ∈ O(t) is denoted by t|p. The result
of replacing the subterm t|p with s is denoted by t[s]p. We
call t(ε) the root symbol of a term t. For a term t, the sets
of the positions of all variables and all operation symbols in
t are denoted by OV (t) and OΣ(t) respectively. The sets of
all variables and all operation symbols in t are denoted by
V(t) and Σ(t) respectively. A map θ : V → T is called a
substitution. The result term of replacing all variables x in
a term t with θ(x) is denoted by tθ, and called an instance
of t. A rewrite rule, denoted by l → r, is a pair of terms l
and r which satisfies V(r) ⊆ V(l) and l � V . The pair (Σ,R)
of a signature Σ and a set R ⊆ T (Σ,V) × T (Σ,V) of rewrite
rules is called a term rewriting system (TRS). We assume R
is non-empty. We often omit Σ and say TRS R. The sets of
the left-hand sides of the rewrite rules, the defined symbols,
the constructors and the redexes of a TRS R are defined as
follows: L(R) = {l ∈ T | l → r ∈ R}, D(R) = {l(ε) ∈ Σ |
l → r ∈ R}, C(R) = Σ \ D(R) and Redex(R) = {lθ ∈ T | θ ∈
T V , l→ r ∈ R}, respectively. BA denotes the set of all maps
from A to B. A term t is called a normal form if it cannot be
rewritten, i.e. ∀p ∈ O(t).(t|p � Redex(R)). The set of normal
forms is denoted by NF(R). When R is obvious, we omit it
from the above sets, like L,D, C, Redex and NF. A term is
linear if it has no duplicated variables, i.e. t(p) = t(q) ∈ V
implies p = q. A TRS is left-linear if each l ∈ L is linear.
A term t ∈ T (C,V) is called a constructor term. A TRS is
called a constructor TRS iff each l ∈ L forms f (�t) for some
constructor terms �t ∈ T (C,V), i.e. l(p) ∈ D implies p = ε.
The rewrite relation→R⊆ T ×T of a TRS R is the smallest
binary relation satisfying the following.

s→R t
def
⇐⇒ ∃p ∈ O(s).(s→R,p t).

s→R,p t
def
⇐⇒ ∃l→ r ∈ R, θ ∈ T V .(s|p = lθ, t = s[rθ]p)

We often use→p instead of→R,p. The reflexive and transi-
tive closure and the transitive closure of a binary relation→
are denoted by→∗ and→+ respectively.

2.2 The E-Strategy

In the E-strategy, a term is reduced according to local strate-
gies. A local strategy is a natural numbers list given to an
operation symbol. Each positive integer i > 0 in the list cor-
responds to the i-th argument of the operation symbol f , and
0 stands for the whole term f (. . .). Let L = [2, 1, 0, 4] be a
local strategy for f ∈ Σ. Let ti be terms and let t′i be terms re-
duced from ti (i = 1, 2, 3, 4). Then, f (t1, t2, t3, t4) is reduced
as follows: (1) The second argument t2 is reduced since the
top of the list is 2. The result term is f (t1, t′2, t3, t4). (2) t1
is reduced since the next element of the list is 1. The result
is f (t′1, t

′
2, t3, t4). (3) [matching] Since the next element is 0,

it is checked whether f (t′1, t
′
2, t3, t4) is a redex or not. (4a) If

so, a possible rewrite rule is applied. The rewritten term is
reduced according to the new local strategy of its root sym-
bol. (4b) Otherwise, 0 is ignored and then t4 is reduced.
When all elements of the list are consumed, the result term
f (t′1, t

′
2, t3, t

′
4) is returned as the reduced term. Note that if

i � L then the i-th argument should not be reduced †. Local
strategies are formalized by a map ϕ : Σ→ List(N) ††.

Definition 2.1: ([4]) A map ϕ : Σ → List(N) is called an
E-strategy map (E-map) iff ϕ( f ) ⊆ {0, 1, . . . , ar( f )} for each
f ∈ Σ. ϕ( f ) is called a local strategy of f . An E-map ϕ is
extended to the map from V ∪Σ in which ϕ(x) = nil for each
x ∈ V . �

The i-th element of a list L is denoted by L(i). Hereafter,
for simplicity, we assume that (a) 0 ∈ ϕ( f ) implies f ∈ D
and (b) ϕ( f )(i) = ϕ( f )( j) > 0 implies i = j. The former is
because any term whose root symbol is not a defined symbol
cannot be a redex. The latter is because it is known that
j ∈ ϕ( f ) has no effect on reduction if i ∈ ϕ( f ) and i < j
under some natural assumption [4].

Reduction under ϕ is given as a function red : T → T
and an auxiliary function eval : T × List(N) → T [4]. We
formalize the reduction under ϕ as a rewrite relation on T ′,
where T ′ = T (Σ′,V), and Σ′ is obtained by adding special
operation symbols red, eval and list constructors nil and ; to
a given Σ.

Definition 2.2: ([4]) Let (Σ,R) be a TRS and ϕ be an E-
map. Then, ⇒ϕ⊆ T ′ × T ′ ††† is defined as the smallest set
satisfying the following: For any i ∈ N+, is ∈ List(N), t,

†We may regard a list [−→in ] as the set {−→in } and use the set nota-
tions, e.g. ∈, ⊆, and so on.
††List(A) is the set of lists whose elements are in A. Besides

the list notation like [a, b, c], we use the list constructors “nil ” (the
empty list) and “ ; ”. E.g. a; b; nil = [a, b].
†††We may write⇒ instead of⇒ϕ
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t′ ∈ T ,

red(t)⇒ eval(t, ϕ(t(ε)))
eval(t, nil)⇒ t

eval(t, i; is)⇒ eval(t[t′]i, is) if red(t|i)⇒∗ t′

eval(t, 0; is)⇒
{

red(t′) if t →ε t′

eval(t, is) if t � Redex.

�

Notice that t and t′ are in T , that is, they do not con-
tain special operation symbols red, eval, and so on. When
red(t) ⇒ t′ (t, t′ ∈ T ), we say the E-strategy reduces t into
t′ under ϕ. The reduced term under ϕ is not always unique
since more than one rewrite rule may be applied to a given
term t, i.e. there may be plural terms t′ such that t →ε t′.

Example 2.3: We give a typical example which shows the
usefulness of the E-strategy: a lazy evaluation for lists.

Rinf =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
hd(x; y) → x
tl(x; y) → y

0s → 0; 0s

Operation symbols hd and tl represent functions which
take a list and return the first element and the remaining
list respectively. A constant 0s represents an infinitely
long list 0; 0; 0; · · ·. Let ϕ be a local strategy satisfying
ϕ(hd) = [1, 0], ϕ(tl) = [1, 0], ϕ(cons) = nil, ϕ(0) =
nil and ϕ(0s) = [0]. Note that the local strategy of
cons is empty, i.e. any reduction of its arguments is re-
stricted. Then, we obtain the rewrite sequences red(0s) ⇒
eval(0s, [0]) ⇒ red(0; 0s) ⇒ eval(0; 0s, nil) ⇒ 0; 0s, and
red(tl(0s)) ⇒ eval(tl(0s), [1, 0]) ⇒ eval(tl(0; 0s), [0]) ⇒
red(0s)⇒∗ 0; 0s, where 0; 0s cannot be rewritten any more
since ϕ(cons) = nil. We expect hd(tl(0s)) to be reduced into
0, which is the second component of the infinite list 0; 0; · · ·
represented by 0s. Reduction under ϕ works it well as fol-
lows:

red(hd(tl(0s))) ⇒ eval(hd(tl(0s)), [1, 0])
⇒ eval(hd(0; 0s), [0])
⇒ red(0)⇒ eval(0, nil)⇒ 0

Note that the E-strategy avoids an infinite loop of 0s →
0; 0s→ 0; 0; 0s→ · · ·. �

3. User-Defined On-Demand Matching

Consider TRS R2nd = Rinf ∪ {2nd(x; y; z) → y}. How to
give a suitable ϕ to obtain the following rewrite sequence:
2nd(0s) →1 2nd(0; 0s) →1.2 2nd(0; 0; 0s) →ε 0? If
2 ∈ ϕ(cons), reducing 0s causes an infinite rewrite sequence.
If 2 � ϕ(cons), the second rewrite step 2nd(0; 0s)) →1.2

2nd(0; 0; 0s) cannot be done. Thus, we cannot give a suit-
able E-map for R2nd. Let us analyze the above rewrite se-
quence. We can see that the above rewrite sequence ex-
pands the argument 0s to make the matching of 2nd(0s) with
2nd(x; y; z) success. Such a matching procedure is called on-
demand matching. On-demand matching may reduce sub-
terms for the success of matching. In this section, like the

E-strategy, we formalize a user-defined on-demand match-
ing mechanism, called O-matching. First we formalize a
matching list of each operation symbol, like a local strategy.

Definition 3.1: A map ϕ′ : Σ → List(N+) is called an O-
matching map (O-map) iff ϕ′( f ) ⊆ {1, 2, . . . , ar( f )} for each
f ∈ Σ. ϕ′( f ) is called a matching list of f . An O-map
ϕ is extended to the map from V ∪ Σ in which ϕ(x) = nil
for each x ∈ V . We call ϕ′ complete iff for any matching
list ϕ′( f ) = [i0, . . . , in], (a) {i0, . . . , in} = {1, . . . , ar( f )} and
(b) ik = ik′ implies k = k′. �

The completeness means that all arguments should be con-
tained and that there are no duplicated elements. The differ-
ence from the E-map is that matching lists do not have zero.
In O-matching, a term is matched with the left-hand sides
of all rewrite rules according to matching lists in the top-to-
bottom order. A given term t to be matched with a rewrite
rule l→ r is compared as follows: First the root symbols of
t and l are compared. If they are different, then t is reduced.
Let t′ be the reduced term. Again the root symbols of t′ and
l are compared. If they are still different, O-matching fails.
When the root symbols of t (or t′) and l are same, their argu-
ments are compared next. Let t (or t′) and l be f (t1, t2) and
f (l1, l2), and let ϕ′( f ) = [2, 1]. O-matching compares t2 with
l2 first, and then compares t1 with l1. Note that for an ordi-
nary (not on-demand) matching, the matching order does
not have any effect on the result since it does not change a
given term. For on-demand matching, the order is impor-
tant since a given term may be changed. For example, if the
above matching of t2 with l2 fails, O-matching fails without
any change of t1. On the other hand, if ϕ′( f ) = [1, 2], then
t1 may be changed.

We formalize O-matching as a rewrite relation like the
E-strategy in Definition 2.2. Like red and eval in Defini-
tion 2.2, we define O-matching with the following operation
symbols:

matchp : T × P(T ) → T × P(T )
evalp : T × P(T ) × List(N) → T × P(T )

where P(A) is the set of all subsets of a set A and p ∈ N∗+.
We formalize the reduction under ϕ′ as a rewrite relation on
T ′, where T ′ = T (Σ′,V), and Σ′ is obtained by adding spe-
cial operation symbols matchp, evalp and list and set con-
structors to a given Σ. Assume a reduction function rd :
T → P(T ) is given where rd(t) is defined for all terms t.
When rd(t) is not explicitly specified for a term t, we define
rd(t) as {t}. Intuitively rd(t) is the set of all terms reduced
from t. We use a filter function f ilter f

p : P(T ) → P(T ) de-
fined as f ilter f

p(T ) = {t ∈ T | (p ∈ OΣ(t)∧ f = t(p))∨∃p′ ≤
p.(t(p′) ∈ V)} for each f ∈ Σ ∪ V and p ∈ N∗+. Intuitively,
f ilter f

p(T ) is the set of terms whose symbol at position p is
f or which has a variable at position p′ ≤ p.

Definition 3.2: Let (Σ,R) be a TRS, ϕ′ an O-map. rd :
T → P(T ) a reduction function. Then, ⇒ϕ

′

rd⊆ T
′ × T ′ † is

†We may omit rd and ϕ′.
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defined as the smallest set satisfying the following: For any
i ∈ N+, p ∈ N∗, is ∈ List(N+), t, t′ ∈ T , T,T ′ ∈ P(T )
where T ′ � ∅,

matchp(t,T )⇒⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

evalp(t,T ′, ϕ′(t(ε))) if f iltert(ε)
p (T ) = T ′

evalp(t′,T ′, ϕ′(t′(ε))) if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f iltert(ε)

p (T ) = ∅
∧t′ ∈ rd(t)
∧ f iltert′(ε)

p (T ) = T ′

(t′, ∅) if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f iltert(ε)

p (T ) = ∅
∧t′ ∈ rd(t)
∧ f iltert′(ε)

p (T ) = ∅
evalp(t,T, nil)⇒ (t,T )
evalp(t,T, i; is)⇒{

evalp(t[t′]i,T ′, is) if matchp.i(t|i,T )⇒∗ (t′,T ′)
(t[t′]i, ∅) if matchp.i(t|i,T )⇒∗ (t′, ∅)

�

Notice that there may be plural pairs (t′,T ′) such that
matchp(t,T ) ⇒ (t′,T ′) since red(t) may not be a single-
ton. Unlike the function red of the E-strategy, matchp takes
and returns a pair of a term and a set of terms. A rela-
tion matchp(t,T ) ⇒∗ (t′,T ′) means that on-demand match-
ing of t with T |p has been performed †, and t has been re-
duced into t′ whose subterms are reduced in order to make
the matching a success. T ′ has been obtained by removing
terms whose subterms at p have no chance to be matched
with t. O-matching first checks whether the root symbol
t(ε) of t should be reduced or not to make the matching a
success. If there exists a term s ∈ T such that s(p) = t(ε) or
s(p′) is a variable for some p′ ≤ p, i.e., f iltert(ε)

p (T ) � ∅,
the root symbol t(ε) is not needed to be reduced. Then,
the term and the filtered set are handed to evalp (the first
condition of matchp(t,T ) of Definition 3.2). If there are no
such terms, an on-demand reduction will be done. For a
reduced term t′ ∈ rd(t), the root symbol t′(ε) is checked
again. If f iltert′(ε)

p (T ) � ∅, then evalp is called (the sec-
ond condition of matchp(t,T )). If f iltert′(ε)

p (T ) is still empty,
then (t′, ∅) is returned as a matching failure (the last condi-
tion of matchp(t,T )). evalp( f (�t),T, L) checks whether ar-
guments ti can be matched with T at position p.i for each
i ∈ L (the first condition of evalp(t,T, i; is)). When all ele-
ments of the list L are consumed, the term f (�t′) and the set
T ′ of remained terms are returned as a matching success (the
case of evalp(t,T, nil)). When a matching fails for some ti,
then the whole on-demand matching also fails, and the term
whose subterms reduced partway and the empty set are re-
turned (the last condition of evalp(t,T, i; is)). Note that if
the reduction function rd is computable, the computation of
matchp(t,T ) is terminating since the size of the elements of
T is finite.

Example 3.3: Consider TRS R2nd given at the beginning
of this section. Let ϕ′(0s) = nil, ϕ′(2nd) = [1], ϕ′(cons) =
[2], ϕ′(0) = nil. Let 0; 0s ∈ rd(0s). We show how
to obtain the rewrite sequence: matchε(2nd(0s),L) ⇒∗
(2nd(0; 0; 0s), {2nd(x; y; z)}) from bottom up.

1. Consider match1.2.2(0s, {2nd(x; y; z)}). The symbol
of 2nd(x; y; z) at position 1.2.2 is a variable z.
Thus, f ilter0s

1.2.2({2nd(x; y; z)}) = {2nd(x; y; z)}. Since
ϕ′(0s) = nil,

match1.2.2(0s, {2nd(x; y; z)})
⇒ eval1.2.2(0s, {2nd(x; y; z)}, nil)
⇒ (0s, {2nd(x; y; z)}).

2. Consider match1.2(0s, {2nd(x; y; z)}). Since the symbol
cons (= ;) of 2nd(x; y;z) at position 1.2 differs from 0s,
the term 0s is reduced into 0; 0s ∈ rd(0s). Then, the
root symbol of the target term 0; 0s becomes cons, and
they are handed to eval.

match1.2(0s, {2nd(x; y; z)})
⇒ eval1.2(0; 0s, {2nd(x; y; z)}, [2]).

Then, the second argument of 0; 0s is checked be-
cause of the list [2]. We have already shown
that match1.2.2(0s, {2nd(x; y; z)}) ⇒ (0s, {2nd(x; y; z)}).
Thus,

match1.2(0s, {2nd(x; y; z)})
⇒ eval1.2(0; 0s, {2nd(x; y; z)}, [2])
⇒ eval1.2(0; 0s, {2nd(x; y; z)}, nil)
⇒ (0; 0s, {2nd(x; y; z)})

3. Consider match1(0s, {2nd(x; y; z)}). Similarly,

match1(0s, {2nd(x; y; z)})
⇒ eval1(0; 0s, {2nd(x; y; z)}, [2])
⇒ eval1(0; 0; 0s, {2nd(x; y; z)}, nil)
⇒ (0; 0; 0s, {2nd(x; y; z)})

4. Finally, we obtain

matchε(2nd(0s),L)
⇒ evalε(2nd(0s), {2nd(x; y; z)}, [1])
⇒ evalε(2nd(0; 0; 0s), {2nd(x; y; z)}, nil)
⇒ (2nd(0; 0; 0s), {2nd(x; y; z)})

We can see that the reduction of 0s to 0; 0s is applied
repeatedly until the target term 2nd(0s) becomes a redex
2nd(0; 0; 0s). �

4. Normality

On-demand matching is expected to have the property that
(1) it returns a redex when the matching succeeded, and
(2) it returns a term which cannot to be any redex when
the matching failed. A term which cannot to be reduced
into any redex is called a head normal form (or a root sta-
ble form). Let R be a TR. The set of all terms reduced
from t is defined as Reduce(t) = {t′ ∈ T | t →∗R t′}. The
set of all head normal forms is defined as HNF(R) = {t ∈
T | Reduce(t) ∩ Redex(R) = ∅}. We use HNF instead of
HNF(R) if no confusion occurs. The following property
holds.

†T |p = {t|p | t ∈ T }.
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Lemma 4.1: ([10]) If t ∈ HNF and t →∗ s then s ∈ HNF
and s(ε) = t(ε).

Even if a reduction function rd returns normal forms
and an O-map ϕ′ is complete, O-matching may return a term
which is neither in Redex nor in HNF.

Counter Example 4.2: Let TRS

Rb1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∧(x, 0) → 0
∧(0, 1) → 0
∧(1, 1) → 1

ϕ′(∧) = [1, 2], ϕ′(1) = ϕ′(0) = nil and rd(∧(1, 1)) = rd(1) =
{1}. O-matching of ∧(∧(1, 1), 1) with L does not reduce a
subterm ∧(1, 1) even though the reduction makes the match-
ing a success.

matchε(∧(∧(1, 1), 1), {∧(x, 0),∧(0, 1),∧(1, 1)})
⇒ evalε(∧(∧(1, 1), 1), {∧(x, 0),∧(0, 1),∧(1, 1)}, [1, 2])
⇒ evalε(∧(∧(1, 1), 1), {∧(x, 0)}, [2])
⇒ (∧(∧(1, 1), 1), ∅)

Since all left-hand sides have the same root symbol as the
input term ∧(∧(1, 1), 1), the input term and the set of the
left-hand sides are handed to evalε as it is. The second
rewrite step removes left-hand sides ∧(0, 1) and ∧(1, 1),
since their symbols at position 1 differ from the root sym-
bol ∧ of the subterm ∧(1, 1) of the target term at position
1. In the third rewrite step, the remaining left-hand side
∧(x, 0) is also removed, since 0 differs from 1 at position
2. Then, all left-hand sides are removed and O-matching re-
turns ∧(∧(1, 1), 1) as the matching failure. However, since
∧(∧(1, 1), 1) →1 ∧(1, 1) ∈ Redex, the returned term is not
a head normal form. The reason why the subterm ∧(1, 1)
was not reduced is because the left-hand side ∧(x, 0) had
been remained as a candidate of applicable rewrite rules in
the second rewrite step even though it will be removed in
the third rewrite step. When ϕ′(∧) = [2, 1], we obtain the
following rewrite sequences:

matchε(∧(∧(1, 1), 1), {∧(x, 0),∧(0, 1),∧(1, 1)})
⇒ evalε(∧(∧(1, 1), 1), {∧(x, 0),∧(0, 1),∧(1, 1)}, [2, 1])
⇒ evalε(∧(∧(1, 1), 1), {∧(0, 1),∧(1, 1)}, [1])
⇒ evalε(∧(1, 1), {∧(1, 1)}, nil)
⇒ (∧(1, 1), {∧(1, 1)})

O-matching removes ∧(x, 0) in the second rewrite step
since the second argument 1 of ∧(∧(1, 1), 1) differs
from 0 of ∧(x, 0). Then, the first argument ∧(1, 1) of
∧(∧(1, 1), 1) is reduced in the third rewrite step since
f ilter∧1 ({∧(1, 1),∧(1, 0)}) is empty. �

As above, the order of matching influences the re-
sult of the on-demnad matching. To give a guideline
for defining a suitable O-matching list, we give a notion
of the ϕ′-normality, which is a generalization of the left-
normality [19] †.

Definition 4.3: Let ϕ′ be an O-map. ϕ′-normal terms are
defined recursively as follows: x ∈ V is ϕ′-normal, and

f (�t) is ϕ′-normal if ∃i ∈ {1, . . . , n}.[ϕ′( f ) = js@[i]@ks ∧
ti is ϕ′-normal ∧ ∀ j ∈ js.(t j ∈ T (Σ)) ∧ ∀k ∈ ks.(tk ∈ V)],
where @ is the list concatenation. A TRS R is ϕ′-normal iff
l is ϕ′-normal for each l→ r ∈ R. �

Note that when ϕ′( f ) = [1, 2, . . . , ar( f )] for each f ∈ Σ,
t is ϕ′-normal iff t is left-normal.

Example 4.4: Let ϕ′(2nd) = [1] and ϕ′(cons) = [2, 1]. A
term l1 = 2nd(cons(x, cons(y, z)) is ϕ′-normal, and R2nd is a
ϕ′-normal TRS. �

The rest of this section, we give a sufficient condition
under which O-matching always returns a redex or a head
normal form. We show three lemmata in order to prove the
main theorems (Theorem 4.8 and 4.9). Proofs of Lemma 4.5
and 4.6 can be found in Appendix A.

Lemma 4.5: Let t, s ∈ T , T, S ∈ P(T ), p ∈ N∗+, ϕ′ a
complete O-map, and rd : T → P(T ) a reduction function.
If matchp(t,T )⇒∗ (s, S ), then

(1) ∀l ∈ S .∀q ∈ OΣ(l|p).(s(q) = l|p(q)),
(2) ∀l ∈ T \ S .[p � O(l) ∨ (∃q ∈ OΣ(l|p).

(s(q) � l|p(q) ∧ ∀q′ < q.(s(q′) = l|p(q′)))].

Lemma 4.6: Let t, s ∈ T , R a ϕ′-normal and constructor
TRS, T ⊆ L, p ∈ N∗+, ϕ′ a complete O-map, and rd : T →
P(T ) a reduction function satisfying rd(t) ⊆ Reduce(t) ∩
HNF. If matchp(t,T ) ⇒∗ (s, ∅), then for each l ∈ T , either
of the following holds:

(1) p � O(l),
(2) p = ε and s(ε) � l(ε), or
(3) ∃q ∈ OΣ(l|p).(s|q ∈ HNF ∧ s(q) � l|p(q) ∧ ∀q′ <

q.(s(q′) = l|p(q′))).

Lemma 4.7: Let R be a constructor TRS, t a term. If for
each l ∈ L, (1) t(ε) � l(ε) or (2) there exists p ∈ OΣ(l) such
that t|p ∈ HNF, t(p) � l(p) and ∀q < p.(t(q) = l(q)), then
t ∈ HNF.

Proof. Assume t is not a head normal form. There exists
a left-hand side l ∈ L and a substitution θ ∈ T V such that
t →∗R lθ. Assume t →∗R lθ is minimal, that is, there is no
l′ ∈ L and θ′ ∈ T V such that t →∗R l′θ′ →+R lθ. From
the minimality, the condition (1) does not holds. From the
condition (2), there exists p ∈ OΣ(l) such that t|p ∈ HNF,
t(p) � l(p) and ∀q < p.(t(q) = l(q)). From the assumption
of a constructor TRS, ∀q ∈ OΣ(l) \ {ε}.(l(q) ∈ C). Thus,
t|q ∈ HNF for any q satisfying ε < q ≤ p. From the mini-
mality, for any rewrite step t′ →p′ t′′ in t →∗R lθ, p′ is greater
than or parallel to p. Therefore, t|p →∗R lθ|p holds. From
Lemma 4.1, lθ|p ∈ HNF and t(p) = lθ(p). Since p ∈ OΣ(l),
lθ(p) = l(p) and it is inconsistent with t(p) � l(p). �

Theorem 4.8: Let t, s ∈ T , S ∈ P(T ), R a left-linear TRS,
p ∈ N∗+, ϕ′ a complete O-map, and rd : T → P(T ) a

†A term is left-normal iff no variable occurs before (or in the
left of) any operation symbol in the string expression of the term.
f (g(0, x), y) is left-normal, but f (x, s(y)) is not.
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reduction function. If matchε(t,L) ⇒∗ (s, S ) and S � ∅,
then s is a redex.

Proof. From Lemma 4.5 (1) and S � ∅, there exists l ∈ S ⊆
L such that ∀q ∈ OΣ(l).(s(q) = l(q)). Since R is left-linear,
l is linear. Therefore, lθ = s for the substitution θ defined
as θ(l(p)) = s(p) for each p ∈ OV (l) and θ(x) = x for each
x ∈ V \ V(l). �

Theorem 4.9: Let t, s ∈ T , S ∈ P(T ), R a ϕ′-normal
and constructor TRS, p ∈ N∗+, ϕ′ a complete O-map, and
rd : T → P(T ) a reduction function satisfying rd(t) ⊆
Reduce(t) ∩ HNF. If matchε(t,L) ⇒∗ (s, ∅), then s is a
head normal form.

Proof. From Lemma 4.6 and 4.7. �

Corollary 4.10: Let t, s ∈ T , S ∈ P(T ), R a ϕ′-normal,
left-linear and constructor TRS, p ∈ N∗+, ϕ′ a complete O-
map, and rd : T → P(T ) a reduction function satisfying
rd(t) ⊆ Reduce(t) ∩ HNF. If matchε(t,L)⇒∗ (s, S ), then s
is a redex or a head normal form. �

The O-map ϕ′ in Example 4.4 for TRS R2nd satisfies
the assumptions of Theorem 4.8 and 4.9. Thus, for each
term t ∈ T , O-matching returns a redex or a head normal
form. Each of the assumptions of the ϕ′-normality, the left-
linearity and the constructor TRS in Theorem 4.8 and 4.9
is a necessary condition. Counter Example 4.2 shows that
the ϕ′-normality is needed. We show the necessity of the
left-linearity and the constructor TRS.

Counter Example 4.11: Let Rb2 = {eq(x, x) → 1},
ϕ′(eq) = [1, 2], ϕ′(1) = nil. Note that Rb2 is not
left-linear. Although matchε(eq(eq(1, 1), 1), {eq(x, x)}) ⇒∗
(eq(eq(1, 1), 1), {eq(x, x)}), the returned eq(eq(1, 1), 1) is not
a redex. Since the position of the subterm eq(1, 1) corre-
sponds to a variable position of the left-hand side eq(x, x),
the subterm has not been reduced in O-matching. Next, con-
sider the following TRS and ϕ′:

Rb3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
¬(¬(1)) → 1
¬(0) → 1
¬(1) → 0

ϕ′(¬) = [1], ϕ′(1) = ϕ′(0) = nil. Note that Rb3 is not a con-
structor TRS. Let rd(0) = {0} ( ⊆ HNF(Rb3 ) ). Although
match(¬(¬(0)),L(Rb3 )) ⇒∗ (¬(¬(0)), ∅), ¬(¬(0)) is not a
head normal form: ¬(¬(0)) →R ¬(1) ∈ Redex(Rb3 ). The
reason why the subterm ¬(0) has not been reduced is be-
cause the left-hand side ¬(¬(1)) and the term ¬(¬(0)) have
a same symbol at position 1. �

Unfortunately, there exists a TRS which is not ϕ′-
normal for any complete O-map ϕ′.

Counter Example 4.12: Consider the TRS

Rb4 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∧(x, 0) → 0
∧(0, x) → 0
∧(1, 1) → 1

For each complete O-map ϕ′, either ϕ′(∧) = [1, 2] or

ϕ′(∧) = [2, 1] holds. The left-hand side ∧(x, 0) is not ϕ′-
normal if ϕ′(∧) = [1, 2]. The left-hand side ∧(0, x) is not
ϕ′-normal if ϕ′(∧) = [2, 1]. �

5. The E-Strategy with O-Matching

We combine the E-strategy introduced in Sect. 2 and
O-matching proposed in Sect. 3, in which O-matching
matchε( ,L) is added before the matching part of the orig-
inal E-strategy, and the reduction function of O-matching
is replaced with red( ). We call it the E-strategy with O-
matching. Notice that, unlike Definition 2.2, we use reduce
instead of eval in the reduction part of the following defini-
tion since eval is confused with evalp in the definition of the
matching part.

Definition 5.1: Let (Σ,R) be a TRS, ϕ be an E-map and
ϕ′ an O-map. Then, ⇒(ϕ,ϕ′)⊆ T ′ × T ′ † is defined as the
smallest set satisfying the following: For any i ∈ N+, is ∈
List(N), p ∈ N∗, t, t′ ∈ T , T,T ′ ∈ P(T ) where T ′ � ∅,

red(t)⇒ reduce(t, ϕ(t(ε)))
reduce(t, nil)⇒ t
reduce(t, i; is)⇒ reduce(t[t′]i, is) if red(t|i)⇒∗ t′

reduce(t, 0; is)⇒⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

red(t′) if matchε(t,L)⇒∗ (s, S )
∧s→ε t′

reduce(s, is) if matchε(t,L)⇒∗ (s, S )
∧s � Redex.

matchp(t,T )⇒⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

evalp(t,T ′, ϕ(t(ε))) if f iltert(ε)
p (T ) = T ′

evalp(t′,T ′, ϕ(t′(ε))) if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f iltert(ε)

p (T ) = ∅
∧red(t)⇒∗ t′

∧ f iltert′(ε)
p (T ) = T ′

(t′, ∅) if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f iltert(ε)

p (T ) = ∅
∧red(t)⇒∗ t′

∧ f iltert′(ε)
p (T ) = ∅

evalp(t,T, nil)⇒ (t,T )
evalp(t,T, i; is)⇒{

evalp(t[t′]i,T ′, is) if matchp.i(t|i,T )⇒∗ (t′,T ′)
(t[t′]i, ∅) if matchp.i(t|i,T )⇒∗ (t′, ∅)

�

When ϕ′( f ) = nil for each f ∈ D, the E-strategy with
O-matching ⇒(ϕ,ϕ′) coincides with the original E-strategy
⇒ϕ (Definition 2.2) because s = t for matchε(t,L)⇒∗ (s, S )
if t(ε) ∈ D. If ϕ( f ) = 0; l for some f ∈ C, when reduc-
ing red(t) where t(ε) = f , first red(t) ⇒ reduce(t, 0; l) and
then matchε(t,L) is reduced in order to check the condition
part. Since f ilter f

ε (L) = ∅ for any f ∈ C, red(t) should
be reduced again. To avoid such a loop, we have assumed
∀ f ∈ C.(0 � ϕ( f )) in Sect. 2.

Example 5.2: Consider Example 3.3 again.

†We may write⇒ instead of⇒(ϕ,ϕ′) .
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R2nd =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

hd(x; y) → x
tl(x; y) → y

0s → 0; 0s
2nd(x; y; z) → y

ϕ′(0s) = ϕ′(0) = nil, ϕ′(2nd) = [1], ϕ′(cons) = [2],
ϕ(0s) = ϕ(2nd) = [0], ϕ(cons) = ϕ(0) = nil. We
show red(2nd(0s)) ⇒(ϕ,ϕ′) 0. The following rewrite
sequence is obtained straightforwardly from the defini-
tion: matchε(0s,L) ⇒ reduceε(0s, {0s}, nil) ⇒ (0s, {0s}).
From this rewrite sequence, red(0s) ⇒ reduce(0s, [0]) ⇒
red(0; 0s) ⇒ reduce(0; 0s, nil) ⇒ 0; 0s holds, where the
second rewrite step comes from 0s →ε 0; 0s. Next, we
show red(2nd(0s)) ⇒ reduce(2nd(0s), [0]) ⇒ red(0) ⇒
reduce(0, nil) ⇒ 0. All rewrite steps except the second
one are trivial from the definition. The second rewrite
step holds if matchε(2nd(0s),L) ⇒ (2nd(0; 0; 0s),T ) and
2nd(0; 0; 0s) →ε 0. It has been already shown in Exam-
ple 3.3. �

5.1 Correctness

A function f : T → P(T ) is called correct if t →∗R s and s is
a normal form whenever s ∈ f (t). Ordinary reduction strate-
gies (inner-most, outer-most, etc) are correct. On the other
hand, the E-strategy is not always correct. For example, for
TRS R = {a → b} and ϕ(a) = nil, red(a) ⇒∗ a. One of the
most important features of the E-strategy is that rewriting of
some arguments can be restricted to avoid an infinite loop of
rewriting like 0s → 0; 0s → 0; 0; 0s → · · ·. Thus, the cor-
rectness is too strong for the E-strategy to satisfy since if we
restrict an argument then any redex under the restricted ar-
gument cannot be rewritten. For a function S : T → P(T ),
the correctness of f with respect to S is defined as follows:
a function f is S -correct iff f (t) ⊆ S (t) for each t ∈ T [2].
We define NF,HNF : T → P(T ) as NF(t) = {s | t →∗R
s ∧ s ∈ NF} and HNF(t) = {s | t →∗R s ∧ s ∈ HNF}. The
correctness coincides with the NF-correctness. Sufficient
conditions for the HNF-correctness of the E-strategy have
been proposed [2], [14], [15]. In this section we give a suf-
ficient condition of the HNF-correctness for the E-strategy
with O-matching.

Theorem 5.3: Let t, s ∈ T , p ∈ N∗+, ϕ an E-map satisfying
that 0 ∈ ϕ( f ) for each f ∈ D, ϕ′ a complete O-map and R a
ϕ′-normal, left-linear and constructor TRS. If red(t) ⇒∗(ϕ,ϕ′)
s, then t →∗R s and s is a head normal form.

Proof. We prove the following properties by induction on
the structure of the definition of⇒(ϕ,ϕ′):

(1) If matchε(t,L) ⇒∗ (s, S ) for some S ∈ P(T ), then
s ∈ Reduce(t) ∩ (Redex ∪ HNF(t)).

(2) If red(t)⇒∗ s then s ∈ Reduce(t) ∩ HNF(t).

For both (1) and (2), it is trivial that s ∈ Reduce(t) from the
definition. If the reduction function rd is defined as rd(t) =
{t′ ∈ T | red(t) ⇒∗ t′}, then from I.H. and Theorem 4.8
and 4.9, (1) holds. The rewrite sequence red(t)⇒∗ s can be

decomposed as follows:

red(t)⇒∗ red(u0) ⇒ reduce(u0, l0)
⇒ · · ·
⇒ reduce(um+1, lm+1)
⇒ s

where um+1 = s and lm+1 = nil. If u0 ∈ V , then l0 = nil and
s = u0. Any variable is a head normal form. If u0(ε) ∈ C,
u0 ∈ HNF and s ∈ HNF. If u0(ε) ∈ D, 0 ∈ l0. There
exists k ∈ {0, . . . ,m} such that lk = 0; lk+1. The rewrite
step reduce(uk, lk) ⇒ reduce(uk+1, lk+1) is obtained by ap-
plying the forth rule with the conditions matchε(uk,L) ⇒∗
(uk+1,U) and uk+1 � Redex. From (1), uk+1 ∈ Redex∪HNF.
Thus, uk+1 ∈ HNF. It is trivial that s ∈ Reduce(uk+1)
from the definition. Therefore, s = um+1 ∈ HNF from
Lemma 4.1. �

Example 5.4: (1) Consider the TRS R2nd again. Let
ϕ(2nd) = [0], ϕ(0s) = [0], ϕ(cons) = nil, ϕ′(2nd) = [1],
ϕ′(0s) = nil, ϕ′(cons) = [2, 1]. Then, the TRS R2nd, the
E-map ϕ and the O-map ϕ′ satisfy the assumptions of Theo-
rem 5.3. Thus, it is HNF-correct, that is, if red(t) ⇒∗(ϕ,ϕ′) s,
then s ∈ HNF(t).
(2) Consider TRS Rb1 again in Example 4.2. Let ϕ(∧) = [0]
and ϕ′(∧) = [2, 1]. They satisfy the assumptions of Theo-
rem 5.3, and it is HNF-correct. �

For both of the above examples, cons(0, 0s) and
∧(∧(1, 1), x) may be evaluated terms, which are not normal
forms but head normal forms.

6. Related Work

For a given function rd : T → P(T ) satisfying rd(t) ⊆
HNF(t) for each t, we can obtain a normal form of a term
t by repeating the following procedure: Apply rd to t and
let t′ be the rewritten term. Apply rd to the all arguments
of t′ again and again. Like red,matchp, such a function,
denoted by Redrd, is also formalized as the following rewrite
relation:

Redrd(t)⇒⎧⎪⎪⎪⎨⎪⎪⎪⎩
x if x ∈ rd(t) ∩ V

f (�t′) if

{
f (�t) ∈ rd(t) ∧ Redrd(ti)⇒∗ t′i
(i = 1, 2, . . .)

where n = ar( f ). Let ϕ be an E-map satisfying ϕ( f ) = [0]
for each f ∈ D and ϕ(g) = nil for each g ∈ C. Let ϕ′ be
an O-map satisfying ϕ( f ) = [1, 2, . . . , ar( f )] for each f ∈ Σ.
Let rd be a function rd(t) = {s | t ⇒∗(ϕ,ϕ′) s}. Then, Redr

almost coincides with the functional strategy [18], [20]. The
functional strategy evaluates terms in top-to-bottom left-to-
right lazy pattern matching, which is adopted by several
lazy functional languages: Clean, Haskell, Miranda, Lazy
ML, etc. We show differences between the functional strat-
egy and the E-strategy with O-matching. Let ϕ and ϕ′ be
the above maps. The functional strategy assumes the pri-
ority of rewrite rules, and the matching is done with each
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rewrite rule in the priority order. The E-strategy with O-
matching matches a term with all rewrite rules simultane-
ously. The trigger of on-demand reduction is also different.
In the functional strategy, each term whose root symbol is
a defined symbol should be reduced in the matching pro-
cess. In the E-strategy with O-matching, subterms are not
reduced until there are no candidates of rewrite rules to be
applied even if the root symbol is a defined symbol. Note
that both conditions coincide for a constructor TRS. From
the above points, the E-strategy with O-matching can be said
to be lazier than the functional strategy. For example, when
reducing f (a) by R = { f (a) → b, a → a}, the functional
strategy reduces the subterm a but the E-strategy with on-
demand matching does not so, and thus f (a) →R b can be
obtained. Moreover, the E-strategy with O-matching has an
advantage in the flexibility of the matching and reduction
order. When it turned out that an argument i of an operation
symbol f can be reduced first by the strictness analysis [14],
[18], we may obtain more efficient reduction strategies by
setting ϕ( f ) = [i, 0].

In the current E-strategy, there is a way to set the reduc-
tion of an argument to be lazy with negative integers. For ex-
ample, ϕ(cons) = [−1,−2] means that “both arguments are
not evaluated until so forced, evaluation is forced, when the
argument is involved in matching” [12]. The difference from
the E-strategy with O-matching is that both instructions for
reduction and matching are in a single list for each opera-
tion symbol, e.g. ϕ( f ) = [−1, 2, 0]. Since those positive and
negative integers have different meanings, we propose an
on-demand matching mechanism in which users give a list
for matching independent with a list for reduction. The sep-
aration of lists makes the mechanism of the strategy more
understandable. The understandability is very important for
user-defined strategies. There are several operational se-
mantics for the E-strategy with negative integers [1], [15],
[17]. An advantage of the E-strategy with O-matching over
those operational semantics is that O-matching allows us to
control the order of matching while the above existing oper-
ation semantics do not.

7. Conclusion

We proposed an on-demand matching mechanism, called O-
matching, and combined it with the E-strategy in order to
obtain a user-defined lazy evaluation strategy. O-matching
was designedwto give an operational semantics of algebraic
specification languages like CafeOBJ. Let ϕ and ϕ′ be an
E-map and an O-map. For the i-th argument of an opera-
tion symbol f , we can select the following combination for
each purpose: (1) the argument must not be reduced when
i � ϕ( f ) and i � ϕ′( f ), (2) the argument is reduced on de-
mand when i � ϕ( f ) and i ∈ ϕ′( f ), and (3) the argument is
reduced eagerly when i ∈ ϕ( f ) such that i occurs before 0.
Users can choose a suitable one for each operation symbol
of each specification (or TRS). Since we divided the exist-
ing E-strategy into the reduction part and the matching part,
we can combine another reduction function rd′ other than

the E-strategy with our on-demand matching with keeping
Theorem 4.8 and 4.9.

One of the future tasks is to study on termination of
the rewrite relation ⇒(ϕ,ϕ′). Context-sensitive rewriting is
one of the approaches to analyzing the termination of the
(positive) E-strategy [7], [8]. Context-sensitive rewriting is
a kind of term rewriting in which reduction is restricted to
some arguments. Termination problem of the E-strategy
is reduced into termination problem of the corresponding
context-sensitive rewriting. For the E-strategy with nega-
tive integers, on-demand rewriting has been proposed [9],
[13] and some termination proving method has been pro-
posed [9]. From those existing studies, it is expected to ob-
tain a termination proving method for the E-strategy with
the on-demnad map. Termination of the E-strategy is a part
of a sufficient condition for head normalization of the E-
strategy. If the E-strategy is terminating and HNF-correct,
then it is head normalizing, that is, for any term which can
be reduced into a head normal form, the E-strategy evaluates
it into a head normal form.
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Appendix: Proofs

Lemma 4.5: Let t, s ∈ T , T, S ∈ P(T ), p ∈ N∗+, ϕ′ a
complete O-map, and rd : T → P(T ) a reduction function.
If matchp(t,T )⇒∗ (s, S ), then

(1) ∀l ∈ S .∀q ∈ OΣ(l|p).(s(q) = l|p(q)),
(2) ∀l ∈ T \ S .[p � O(l) ∨ (∃q ∈ OΣ(l|p).

(s(q) � l|p(q) ∧ ∀q′ < q.(s(q′) = l|p(q′)))].

Proof. (1) We prove the claim by induction on the struc-
ture of the definition of ⇒, which means that we assume
that for any application of the rewrite rules evalp(t,T, i; is)
⇒ evalp(t[t′]i,T ′, is) if matchp.i(t|i,T ) ⇒∗ (t′,T ′) (Defini-
tion 3.2), the claim (1) holds for the instance of the condition
part matchp.i(t|i,T )⇒∗ (t′,T ′). If S = ∅, the claim (1) holds
trivially. Assume S � ∅. If t = x ∈ V , matchp(x,T ) ⇒
evalp(x, S , nil) ⇒ (x, S ) and f ilterx

p(T ) = S . Since x is
a variable, ∃p′ ≤ p.(l(p′) ∈ V) from the definition of
f ilter f

p. Thus, Σ(l|p) = ∅ and (1) holds. Assume t � V and
ϕ′(t(ε)) = [i1, . . . , in]. From Definition 3.2 and S � ∅, the
rewrite sequence matchp(t,T )⇒∗ (s, S ) can be decomposed
as

matchp(t,T ) ⇒ evalp(u0,U0, [i0, i1, . . . , in])
⇒ evalp(u1,U1, [i1, . . . , in])
...
⇒ evalp(un,Un, [in])
⇒ evalp(un+1,Un+1, nil)
⇒ (s, S )

where s = un+1, S = Un+1, matchp.ik (uk |ik ,Uk)⇒∗ (u′k,Uk+1)
and uk+1 = uk[u′k]ik for each k ∈ {0, . . . , n}. Let l ∈ S and
q ∈ OΣ(l|p).

(a) Consider the case of q = ε. Since l ∈ S ⊆ U0 =

f ilteru0(ε)
p (t,T ), it holds that u0(ε) = l(p) or ∃p′ ≤

p.(l(p′) ∈ V). Since ε ∈ OΣ(l|p), the latter case does
not hold, and u0(ε) = l(p). From Definition 3.2, any
rewrite step whose left-hand side is evalp(t, . . .) does
not change the root symbol of t. Thus, s(ε) = u0(ε),
and therefore s(ε) = l(p) = l|p(ε).

(b) Consider the case of q = i.q′. Since ϕ′ is complete, q =
ik.q′ for some k. From the I.H. of matchp.ik (uk |ik ,Uk)
⇒∗ (u′k,Uk+1), for any lk ∈ Uk+1 and qk ∈ OΣ(lk |p.ik ),
u′k(qk) = lk |p.ik (qk). Since l ∈ S ⊆ Uk+1, for any qk ∈
OΣ(l|p.ik ), u′k(qk) = l|p.ik (qk). Since ik.q′ = q ∈ OΣ(l|p),
q′ ∈ OΣ(l|p.ik ). Thus, u′k(q′) = l|p.ik (q′). From Lemma
A.1, u′k should not be changed in the remaining rewrite
sequence, i.e. s|ik = u′k. Thus, s(ik.q′) = s|ik (q′) = u′k(q′)
= l|p.ik (q′) = l|p(ik.q′).

(2) We also prove the claim by induction on the structure of
the definition of⇒. If T \S = ∅, the claim (2) holds trivially.
Assume T \S � ∅ and let l ∈ T \S . If p � O(l), the claim (2)
holds trivially. Assume p ∈ O(l). l|p is not a variable since
if l|p ∈ V then l ∈ S from the definition of f ilter f

p. Thus,
p ∈ OΣ(l). Assume the rewrite sequence matchp(t,T ) ⇒∗
(s, S ) consists of a single rewrite step, i.e. matchp(t,T ) ⇒
(s, S ). From Definition 3.2, f ilters(ε)

p (T ) = S = ∅ and thus
s(ε) � l(p). There is no q′ < ε. Therefore, (2) holds since
s(ε) � l|p(ε) ∧ ∀q′ < ε.(s(q′) = l|p(q′)). Assume the rewrite
sequence matchp(t,T ) ⇒∗ (s, S ) consists of more than one
rewrite steps, i.e. for some m ≥ 0,

matchp(t,T ) ⇒ evalp(u0,U0, l0)
⇒ evalp(u1,U1, l1)
...
⇒ evalp(um,Um, lm)
⇒ (s, S ).

Note that S may be empty. There are three cases as follows:
(a) l ∈ T \U0, (b) l ∈ Uk \Uk+1 for some k ∈ {0, . . . ,m−1},
or (c) l ∈ Um \ S .

(a) Let l ∈ T \ U0. The proof is the same with the above
case of matchp(t,T )⇒ (s, S ).

(b) Let l ∈ Uk \ Uk+1 for some k ∈ {0, . . . ,m − 1}.
Assume ϕ′(t(ε)) = [i0, . . . , in] and lk = [ik, . . . , in]
for each k ∈ {0, . . . ,m}. Since evalp(uk,Uk, lk) ⇒
evalp(uk+1,Uk+1, lk+1), it holds that matchp.ik (uk |ik ,Uk)
⇒∗ (u′k,Uk+1), Uk+1 � ∅, and uk+1 = uk[u′k]ik . Note
that p.ik ∈ O(l) since p ∈ OΣ(l). From the I.H. and
p.ik ∈ O(l), there exists q ∈ OΣ(l|p.ik ) such that u′k(q) �
l|p.ik (q) ∧ ∀q′ < q.(u′k(q′) = l|p.ik (q′)). q ∈ OΣ(l|p.ik ) im-
plies ik.q ∈ OΣ(l|p). Then, there exists ik.q ∈ OΣ(l|p)
such that s(ik.q) = s|ik (q) = u′k(q) � l|p.ik (q) = l|p(ik.q).
Let q′ < ik.q. If q′ = ε, s(ε) = l(p) since l ∈ Uk ⊆ U0.
Assume q′ = ik.q′′. Since q′′ < q, u′k(q′′) = l|p.ik (q′′).
From Lemma A.1, s|ik = u′k. Thus, s(ik.q′′) = s|ik (q′′) =
u′k(q′′) = l|p.ik (q′′) = l|p(ik.q′′). Therefore, s(ik.q) �
l|p(ik.q) ∧ ∀q′ < ik.q.(s(q′) = l|p(q′)) holds.

(c) Let l ∈ Um \ S . Then Um � S , i.e., S � Um. Since
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S � Um, the last rewrite step of the above decomposed
rewrite sequence can be written as evalp(um,Um, lm)⇒
(um[u′m]i, ∅) where matchp.im (um|im ,Um)⇒∗ (u′m, ∅) and
s = um[u′m]im . The proof is the same with (b). �

Lemma 4.6: Let t, s ∈ T , R a ϕ′-normal and constructor
TRS, T ⊆ L, p ∈ N∗+, ϕ′ a complete O-map, and rd : T →
P(T ) a reduction function satisfying rd(t) ⊆ Reduce(t) ∩
HNF. If matchp(t,T ) ⇒∗ (s, ∅), then for each l ∈ T , either
of the following holds:

(1) p � O(l),
(2) p = ε and s(ε) � l(ε), or
(3) ∃q ∈ OΣ(l|p).(s|q ∈ HNF ∧ s(q) � l|p(q) ∧ ∀q′ <

q.(s(q′) = l|p(q′))).

Proof. We prove the claim by induction on the structure
of the definition of ⇒. If T = ∅, the claim holds triv-
ially. Assume T � ∅. Let l ∈ T . If p � O(l), the claim
(1) holds. Assume p ∈ O(l). If p ∈ OV (l), l should not
be removed in any rewrite step. It contradicts the assump-
tion matchp(t,T ) ⇒∗ (s, ∅). Assume p ∈ OΣ(l). Consider
the case of matchp(t,T ) ⇒ (s, ∅) which consists of a sin-
gle rewrite step. Then, s ∈ rd(t) ⊆ HNF. s(ε) � l(p)
holds from the definition of f ilter f

p and p ∈ OΣ(l). Thus,
the claim (3) holds with q = ε, i.e., s|ε ∈ HNF ∧ s(ε) �
l|p(ε) ∧ ∀q′ < ε.(s(q′) = l|p(q′)). Consider the case of
matchp(t,T )⇒+ (s, ∅). Assume

matchp(t,T ) ⇒ evalp(u0,U0, l0)
⇒ evalp(u1,U1, l1)
...
⇒ evalp(um,Um, lm)
⇒ (s, ∅).

where Uk � ∅ for each k ∈ {0, . . . ,m}. There are three cases
as follows: (a) l ∈ T \ U0, (b) l ∈ Uk \ Uk+1 for some
k ∈ {0, . . . ,m − 1}, or (c) l ∈ Um.

(a) Let l ∈ T \ U0. From the definition of f ilter f
p, s(ε) =

u0(ε) � l(p) holds. If p = ε, (2) holds. Assume p � ε.
There exists l′ ∈ U0 such that s(ε) = l′(p) ∈ Σ or ∃p′ ≤
p.(l′(p′) ∈ V). If ∃p′ ≤ p.(l′(p′) ∈ V), l′ should not
be removed and it contradicts the assumption. Thus,
s(ε) = l′(p). Since R is a constructor TRS, T ⊆ L and
p � ε, s(ε) ∈ C and thus s ∈ HNF. Therefore, (3)
holds with q = ε.

(b) Let l ∈ Uk \ Uk+1 for some k ∈ {0, . . . ,m − 1}.
Assume ϕ′(t(ε)) = [i0, . . . , in] and lk = [ik, . . . , in].
Since evalp(uk,Uk, lk) ⇒ evalp(uk+1,Uk+1, lk+1), it
holds that matchp.ik (uk |ik ,Uk)⇒∗ (u′k,Uk+1) and uk+1 =

u j[u′k]ik . From Lemma 4.5 (2), there exists q ∈ OΣ(l|p.ik )
such that u′k(q) � l|p.ik (q) ∧ ∀q′ < q.(u′k(q′) = l|p.ik (q′)).
From Lemma 4.5 (1) and Uk+1 � ∅, there exists l′ ∈
Uk+1 such that ∀q′ ∈ OΣ(l′|p.ik ).(u′k(q′) = l′p.ik (q

′)).
Assume q � OΣ(l′|p.ik ). Then l′(p.ik.q) ∈ V . From
the ϕ′-normality of l′, l′(p.ik′) ∈ V for each k′ > k.
Thus, l′ ∈ Uk+1 should not be filtered. It contradicts
matchp(t,T ) ⇒∗ (s, ∅). Thus, q ∈ OΣ(l′|p.ik ), and

u′k(q) = l′p.ik (q). Since l′ is a constructor term, u′k(q) ∈
C. Thus, u′k |q ∈ HNF. From Lemma A.1, s|ik = u′k,
and thus, s|ik .q = u′k |q ∈ HNF. Therefore, s|ik .q = u′k |q ∈
HNF ∧ s(ik.q) � l|p(ik.q) ∧ ∀q′ < ik.q.(s(q′) = l|p(q′))
holds. The proof of ∀q′ < ik.q.(s(q′) = l|p(q′)) is simi-
lar with the last part of the proof (2) (b) of Lemma 4.5.

(c) Let l ∈ Um. The last rewrite step evalp(um,Um, lm) ⇒
(s, ∅) is obtained by the application of the rewrite rule
evalp(t,T, i; is)⇒ (t[t′]i, ∅) if matchp.i(t|i,T )⇒∗ (t′, ∅)
of Definition 3.2. Thus, matchp.im (um|im ,Um)⇒∗ (u′m, ∅)
and s = um[u′m]im . From the I.H., (1), (2) or (3) holds
for l ∈ Um, p.im ∈ N∗+ and u′m ∈ T . From p ∈ OΣ(l),
the case I.H.(1), p.im � O(l), does not hold. The case
I.H.(2) is also inconsistent with p.im � ε. Assume
I.H.(3) ∃q ∈ OΣ(l|p.im ).(u′m|q ∈ HNF∧u′m(q) � l|p.im (q)∧
∀q′ < q.(u′m(q′) = l|p.im (q′))). Then, (3) holds with
im.q ∈ OΣ(l|p). s|im.q = um[u′m]im |im.q = u′m|q ∈ HNF and
s(im.q) = um[u′m]im (im.q) = u′m(q) � l|p.im (q) = l|p(im.q)
hold. ∀q′′ < im.q.(s(q′′) = l|p(q′′)) holds as follows:
if q′′ = ε, then s(ε) = l(p) = l|p(ε). If q′′ = im.q′,
then q′ < q and s(im.q′) = um[u′m]im (im.q′) = u′m(q′) =
l|p.im (q′) = l|p(im.q′). �

Lemma A.1: Let t, s, u, u′ ∈ T , T ⊆ T , and ϕ′ a
complete O-map. If matchp(t,T ) ⇒∗ evalp(u,U, i; is) ⇒
evalp(u′,U′, is)⇒∗ (s, S ), then u′|i = s|i.

Proof. From Definition 3.1, ik = ik′ implies k = k′ for any
matching list ϕ′( f ) = [i0, . . . , in]. Thus, is does not include
i. From Definition 3.2, u′|i should not be changed in the
rewrite sequence evalp(u′,U′, is)⇒∗ (s, S ). Thus, u′|i = s|i.
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