@article{oai:kanazawa-u.repo.nii.ac.jp:00014724, author = {Uno, Masafumi and Kurita, Seiichiro and Misu, Hirofumi and Ando, Hitoshi and Ota, Tsuguhito and Matsuzawa-Nagata, Naoto and Kita, Yuki and Nabemoto, Satoko and Akahori, Hiroshi and Zen, Yoh and Nakanuma, Yasuni and Kaneko, Shuichi and Takamura, Toshinari}, issue = {1}, journal = {Hepatology}, month = {Jul}, note = {Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease and is one of the most common liver diseases in the developed world. The histological findings of NASH are characterized by hepatic steatosis, inflammation, and fibrosis. However, an optimal treatment for NASH has not been established. Tranilast, N-(3′,4′-dimedioxycinnamoyl)- anthranilic acid, is an antifibrogenic agent that inhibits the action of transforming growth factor beta (TGF-β). This drug is used clinically for fibrogenesis-associated skin disorders including hypertrophic scars and scleroderma. TGF-β plays a central role in the development of hepatic fibrosis, and tranilast may thus ameliorate the pathogenesis of NASH. We investigated the effects of tranilast using an established dietary animal model of NASH, obese diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats and nondiabetic control Long-Evans Tokushima Otsuka (LETO) rats fed a methionine-deficient and choline-deficient diet. Treatment with 2% tranilast (420 mg/kg/day) for 8 weeks prevented the development of hepatic fibrosis and the activation of stellate cells, and down-regulated the expression of genes for TGF-β and TGF-β-target molecules, including α1 procollagen and plasminogen activator-1. In addition, tranilast attenuated hepatic inflammation and Kupffer cell recruitment, and down-regulated the expression of tumor necrosis factor alpha. Unexpectedly, tranilast ameliorated hepatic steatosis and up-regulated the expression of genes involved in beta-oxidation, such as peroxisome proliferator-activated receptor α and carnitine O-palmitoyltransferase-1. Most of these effects were observed in LETO rats and OLETF rats, which suggest that the action of tranilast is mediated through the insulin resistance-independent pathway. Conclusion: Our findings suggest that targeting TGF-β with tranilast represents a new mode of therapy for NASH. Copyright © 2008 by the American Association for the Study of Liver Diseases., 金沢大学医薬保健研究域医学系}, pages = {109--118}, title = {Tranilast, an antifibrogenic agent, ameliorates a dietary rat model of nonalcoholic steatohepatitis}, volume = {48}, year = {2008} }