@article{oai:kanazawa-u.repo.nii.ac.jp:00029309, author = {Suzuki, Nobuo and Somei, Masanori and Kitamura, Keiichiro and Reiter, Russel J. and Hattori, Atsuhiko}, issue = {3}, journal = {Journal of Pineal Research}, month = {Apr}, note = {The teleost scale is a calcified tissue that contains osteoclasts, osteoblasts, and bone matrix, all of which are similar to those found in mammalian membrane bone. Using the goldfish scale, we recently developed a new in vitro assay system and previously demonstrated that melatonin suppressed both osteoclastic and osteoblastic activities in this assay system. In mammals, 2-bromomelatonin possesses a higher affinity for the melatonin receptor than does melatonin. Using a newly developed synthetic method, we synthesized 2-bromomelatonin, 2,4,6-tribromomelatonin and novel bromomelatonin derivatives (1-allyl-2,4,6-tribromomelatonin, 1-propargyl-2,4,6-tribromomelatonin, 1-benzyl-2,4,6-tribromomelatonin, and 2,4,6,7-tetrabromomelatonin) and then examined the effects of these chemicals on osteoclasts and osteoblasts. All bromomelatonin derivatives, as well as melatonin, had an inhibitory action on osteoclasts. In particular, 1-benzyl-2,4,6-tribromomelatonin (benzyl-tribromomelatonin) possessed a stronger activity than melatonin. At an in vitro concentration of 10-10 m, benzyl-tribromomelatonin still suppressed osteoclastic activity after 6 hr of incubation. In reference to osteoblasts, all bromomelatonin derivatives had a stimulatory action, although melatonin inhibited osteoblastic activity. In addition, estrogen receptor mRNA expression (an osteoblastic marker) was increased in benzyl-tribromomelatonin (10-7 m)-treated scales. Taken together, the present results strongly suggest that these novel melatonin derivatives have significant potential for use as beneficial drug for bone diseases such as osteoporosis. © 2007 The Authors. 全文公開200904, 金沢大学環日本海域環境研究センター生物多様性研究部門}, pages = {326--334}, title = {Novel bromomelatonin derivatives suppress osteoclastic activity and increase osteoblastic activity: Implications for the treatment of bone diseases}, volume = {44}, year = {2008} }