{"created":"2023-07-27T06:50:18.822556+00:00","id":43046,"links":{},"metadata":{"_buckets":{"deposit":"32c1237c-a10d-4657-a80d-1f79725a1d7b"},"_deposit":{"created_by":18,"id":"43046","owners":[18],"pid":{"revision_id":0,"type":"depid","value":"43046"},"status":"published"},"_oai":{"id":"oai:kanazawa-u.repo.nii.ac.jp:00043046","sets":["2812:2813:2829"]},"author_link":["69253","69254"],"item_9_biblio_info_8":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2005-03","bibliographicIssueDateType":"Issued"},"bibliographicPageStart":"81p.","bibliographicVolumeNumber":"2003-2004","bibliographic_titles":[{"bibliographic_title":"平成16(2004)年度 科学研究費補助金 基盤研究(B) 研究成果報告書"},{"bibliographic_title":"2004 Fiscal Year Final Research Report","bibliographic_titleLang":"en"}]}]},"item_9_creator_33":{"attribute_name":"著者別表示","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{}],"nameIdentifiers":[{},{}]}]},"item_9_description_21":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"・誘導加温装置の開発\n従来の誘導加温装置における癌治療範囲は最大40mm(3mT@40mm)であったが、更なる治療範囲拡大を目指し装置を改良した。改良機の主な仕様は、消費電力最大10kW、共振電流300A、コイルの外形30cmである。同装置を用いて磁場強度の測定を行った結果、治療可能範囲が約90mm(3mT@89mm)であることを確認した。\n・アプリケータの高効率化\n(1)高透磁性材料の付加(フェライト板の利用)\nフェライトをコイル下に設置することで、治療可能範囲を120mm(3mT@120mm)に拡大することができた。さらに、電磁界シミュレータMAFIAによるシミュレーション結果より、フェライトがアプリケータから漏洩する電磁波を低減していることも確認できた。\n(2)高周波抵抗低減線材の使用(リッツ線の使用)\n従来の装置はアプリケータでの銅損が5kWと非常に大きく、装置の小電力化及び小型化を推し進める上で大きなハードルとなっていた。そこで、リッツ線を用いた高効率アプリケータの製作に努め、消費電力を約30%低減することに成功した。\n・DM発熱メカニズムの解明\nこれまでDM発熱メカニズムは未知とされ、定量的に測定したという報告は皆無であった。そこで、トロイダルコイルを用いてDMのヒステリシス損を実験により測定し、DM発熱量の約40%がヒステリシス損による発熱であることを確認した。\n・血流による冷却シミュレーション\n1次元熱伝導シミュレーションを行うことで、人体の各部位における治療可能性を明確にできた。\n・渦電流対策\n豚など大型動物を用いて動物実験を行う際は、渦電流による発熱を考慮しなければならない。簡単なモデルを想定した理論的考察の結果、出力周波数を約150kHzにすることで渦電流による発熱を小さくし、DMを十分発熱させることができると分かった。また、豚肉を用いたin vitro実験でも同様の結果を得た。\n・誘導加温装置に関するEMC対策の関連研究も行った。","subitem_description_type":"Abstract"},{"subitem_description":"-Device development\nIn order to extend the maximum range for cancer treatment, we have improved the first prototype device (which could generate the magnetic field of 3 mT at 40 mm from the induction coil). By increasing the output power to 10kW, the resonance current to 300 A, and the coil diameter to 30 cm, we have been able to realize 3 mT at about 90 mm, which was confirmed by the actual measurement of induced magnetic field strength from the improved device.\n-Highly effective applicator\n(a)Use of a high magnetic permeability material (ferrite)\nThe range of the treatment has been further extended to 120 mm, by placing a ferrite board under the coil. From an electromagnetic simulation, we have also confirmed that this ferrite board reduces the electromagnetic waves leaking from the applicator.\n(b)Use of \"litz wire\" with low \"high-frequency resistance\"\nThe copper loss of the applicator on a previous device was as high as 5 kW, because of the high \"high-frequency resistance\" of the coil wir es. Making use of the low \"high-frequency resistance\" of \"litz wire,\" we have reduced the power consumption of the device by approximately 30%.\n-DM heating mechanisms\nIn order to clarify the heating mechanism of Dextran Magnetite (DM), we have measured its \"hysteresis loss\" by filling the DM solution into a toroidal tube. As a result, we have found that the hysteresis loss occupies about 40 percent of the total amount of DM heating.\n-Simulation of cooling blood flow\nThe cooling mechanism of the heated regions due to the blood flow has been examined by a one-dimensional heat conduction simulation.\n-Eddy current reduction\nIn the tests using large animals such as pigs, it is necessary to reduce the \"eddy current heating\" on normal cells. By assuming a simple model, we have found theoretically that the eddy current heating can be reduced even when the DM is sufficiently heated, by adjusting the output frequency of the device as approximately 150 kHz.\n-Other EMC measurement techniques have been developed associated with the induction heating.","subitem_description_type":"Abstract"}]},"item_9_description_22":{"attribute_name":"内容記述","attribute_value_mlt":[{"subitem_description":"研究課題/領域番号:15300179, 研究期間(年度):2003-2004","subitem_description_type":"Other"},{"subitem_description":"出典:「誘導加温による癌治療器システムの開発」研究成果報告書 課題番号15300179\n (KAKEN:科学研究費助成事業データベース(国立情報学研究所))\n   本文データは著者版報告書より作成","subitem_description_type":"Other"}]},"item_9_identifier_registration":{"attribute_name":"ID登録","attribute_value_mlt":[{"subitem_identifier_reg_text":"10.24517/00049393","subitem_identifier_reg_type":"JaLC"}]},"item_9_publisher_17":{"attribute_name":"公開者","attribute_value_mlt":[{"subitem_publisher":"金沢大学自然科学研究科"}]},"item_9_relation_28":{"attribute_name":"関連URI","attribute_value_mlt":[{"subitem_relation_name":[{"subitem_relation_name_text":"https://kaken.nii.ac.jp/search/?qm=50019775"}],"subitem_relation_type_id":{"subitem_relation_type_id_text":"https://kaken.nii.ac.jp/search/?qm=50019775","subitem_relation_type_select":"URI"}},{"subitem_relation_name":[{"subitem_relation_name_text":"https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-15300179/"}],"subitem_relation_type_id":{"subitem_relation_type_id_text":"https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-15300179/","subitem_relation_type_select":"URI"}},{"subitem_relation_name":[{"subitem_relation_name_text":"https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-15300179/153001792004kenkyu_seika_hokoku_gaiyo/"}],"subitem_relation_type_id":{"subitem_relation_type_id_text":"https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-15300179/153001792004kenkyu_seika_hokoku_gaiyo/","subitem_relation_type_select":"URI"}}]},"item_9_version_type_25":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_ab4af688f83e57aa","subitem_version_type":"AM"}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2017-12-21"}],"displaytype":"detail","filename":"TE-PR-NAGANO-I-kaken 2005-81p.pdf","filesize":[{"value":"10.7 MB"}],"format":"application/pdf","licensetype":"license_11","mimetype":"application/pdf","url":{"label":"TE-PR-NAGANO-I-kaken 2005-81p.pdf","url":"https://kanazawa-u.repo.nii.ac.jp/record/43046/files/TE-PR-NAGANO-I-kaken 2005-81p.pdf"},"version_id":"b84e76cb-907d-4787-afa4-95aecf2e420b"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"research report","resourceuri":"http://purl.org/coar/resource_type/c_18ws"}]},"item_title":"誘導加温による癌治療器システムの開発","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"誘導加温による癌治療器システムの開発"},{"subitem_title":"Development of Cancer Treatment System by Induction Heating","subitem_title_language":"en"}]},"item_type_id":"9","owner":"18","path":["2829"],"pubdate":{"attribute_name":"公開日","attribute_value":"2017-12-21"},"publish_date":"2017-12-21","publish_status":"0","recid":"43046","relation_version_is_last":true,"title":["誘導加温による癌治療器システムの開発"],"weko_creator_id":"18","weko_shared_id":-1},"updated":"2023-07-27T14:29:15.298875+00:00"}