ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. N. 科研費研究成果報告書, JSTプロジェクト報告書, COE報告書
  2. n-1. 科学研究費成果報告書
  3. 平成14(2002)年度

整数論における密度定理と確率論における極限定理-大数の法則,中心極限定理…

https://doi.org/10.24517/00052886
https://doi.org/10.24517/00052886
4309c93a-7f48-4604-9383-46e0546cfa01
名前 / ファイル ライセンス アクション
SC-PR-TAKANOBU-S-kaken SC-PR-TAKANOBU-S-kaken 2003-10p.pdf (352.6 kB)
license.icon
Item type 報告書 / Research Paper(1)
公開日 2018-12-10
タイトル
タイトル 整数論における密度定理と確率論における極限定理-大数の法則,中心極限定理…
タイトル
タイトル Density theorem in number theory and limit theorem in probability theory - LLN, CLT etc.
言語 en
言語
言語 jpn
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18ws
資源タイプ research report
ID登録
ID登録 10.24517/00052886
ID登録タイプ JaLC
著者 高信, 敏

× 高信, 敏

WEKO 80569
e-Rad 40197124

高信, 敏

Search repository
書誌情報 平成14(2002)年度 科学研究費補助金 基盤研究(C) 研究成果報告書
en : 2002 Fiscal Year Final Research Report

巻 2001-2002, p. 10p., 発行日 2003-03
出版者
出版者 金沢大学理工研究域数物科学系
抄録
内容記述タイプ Abstract
内容記述 ディリクレによる「2整数が互いに素になる確率=6/\pi^2」という密度定理を,通常の確率論における大数の強法則に翻訳し,極限定理における次のステップである中心極限定理スケーリングを考え,そしてさらにその奥にある(はずの)極限定理を見出す試みをした.
我々の基礎とする確率空間は(Zhat,\lambda)(ただしZhat(ゼットハットと読む)は有限整アデール環,\lambdaはその上のハール確率測度)とし,アデールの組(x,y)\in Zhat\time Zhatが互いに素のとき,1,そうでないとき0を返す関数をX(x,y)とする.このときS_N(x, y)=(1/N^2)\sum_{m,n=1}^N X(x+m,y+n)はN\to\inftyのとき,6/\pi^2に概収束する.これが大数の強法則である.
次に中心極限定理スケーリングN(S_N(x,y)-6/\pi^2)を考える.Nを無限大にもっていく仕方に応じて,即ち,部分列{N_k}ごとにこれは収束し,その極限は{N_k}から定まる商空間Zhat/\simの元によって完全にパラメトライズされる.とくに,N(S_N(x,y)-6/\pi^2)はN\to\inftyのとき収束しない-中心極限定理は成立しない-のである!
ところが,この収束をCes\`aroの意味で捉え直す,即ち,相加平均の極限として捉えるならば次のことが分かった:
(1/N)\sum_{n=1}^N n(S_n(x,y)-6/\pi^2) \to U(x)+U(y) in L^2.
ここでU(x)=\sum_{u=1}^{infty}(\mu(u)/u)((x\mod u)/u-(u-1)/2u) in L^2である(\mu(u)はメビウス関数).このUがどのようなものであるかを探るのが本当にやらねばならぬ仕事となる.本研究で分かったことは
「Uの分布は対称で,L^{infty-}に属する」
である.(平均ゼロの)正規分布もこの性質をもっているが,「Uの分布は正規分布とは似て非なるものである」だろうという予想を立てている.もしこれが成り立つ(正しい)ならば,我々はこれを非中心極限定理とよびたい.
もう1つ,部分列{N_k}が商空間Zhat/\simの中でN_k \not=0,N_k\to 0ならば
N_k(S_{N_k}(x,y)-6/\pi^2) \to 0 in L^2
となってしまう.自明でない極限を取り出すためにN_k(S_{N_k}(x,y)-6/\pi^2)の標準偏差で割るというrenormalizationを施すと,「これはk\to\inftyのとき標準正規分布に収束する」だろうという予想も立てている.
これら2つの予想を確かめる(証明する)までは行かなかった.ただ,これら予想を立てた1つの根拠として,数値実験による検証を与えた.
抄録
内容記述タイプ Abstract
内容記述 Our purpose of the project is as follows : We formulate Dirichlet's density theorem stating the probability of two integers to be co-prime as law of large numbers (LLN), and then we consider central limit theorem scaling (CLT-scaling) and find a limit theorem on it.
Let us consider (Zhat, \lambda) as a fundamental probability space, where Zhat is a finite integral adele and \lambda the Haar probability measure on it. For each (x,y) \in Zhat \times Zhat, let X(x,y) = 1 or 0 according as (x,y) is co-prime or not. Then, as N\to\infty, S_N(x,y) = (1/N)^2 \sum_{m,n=1}^N X(x+m,y+n) converges to 6/\pi^2 a.s., which is just LLN.
Next we consider the limit behavior of CLT-scaling N(S_N(x,y)-6/\pi^2). Then we can describe completely the set of all limit points of {N(S_N(x,y)-6/\pi^2)} in the L^2-space by parametrizing them continuously in terms of elements of a quotient ring Zhat/\sim. In particular, N(S_N(x,y)-6/\pi^2) is not convergent as N\to\infty. In a word, CLT does not hold!
If, however, we interpret the convergence in the sense of Cesaro, then
(1/N) \sum_{n=l}^N n(S_n(x,y}-6/\pi^2) \to U(x) + U(y) in l^2.
Here
U(x) = \sum_{u=1}^{\infty} (\mu(u)/u) ((x\mod u)/u - (u-1)/2u) in L^2,
where \mu(u) is the Mobius function. So our study turns to an investigation of this U. In this project, it is seen that the distribution of U is symmetric and has moments of all orders. We further expect that U will be not normal distributed, although normal distributions with mean zero have the property above. If this is proved, we want to call the convergence above non CLT.
On the one hand, from the description of limit points of {N(S_N(x,y) -6/\pi^2)} N_k(S_{N_K}(x,y)-6/\pi^2) \to 0 in L^2 for whatever subsequence {N_k} such that N_k \not=0 and N_k \to 0 in Zhat/\sim. Renormalizing this by its standard deviation in order to find a nontrivial limit, we expect that the renormalization will converge to a standard normal distribution.
We can not succeed in proving these two conjectures within the term of project. We are instead giving a verification by computational experiment.
内容記述
内容記述タイプ Other
内容記述 研究課題/領域番号:13640108, 研究期間(年度):2001-2002
内容記述
内容記述タイプ Other
内容記述 出典:「整数論における密度定理と確率論における極限定理-大数の法則,中心極限定理…」研究成果報告書 課題番号13640108
(KAKEN:科学研究費助成事業データベース(国立情報学研究所))
   本文データは著者版報告書より作成
著者版フラグ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
関連URI
識別子タイプ URI
関連識別子 https://kaken.nii.ac.jp/search/?qm=40197124
関連名称 https://kaken.nii.ac.jp/search/?qm=40197124
関連URI
識別子タイプ URI
関連識別子 https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-13640108/
関連名称 https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-13640108/
関連URI
識別子タイプ URI
関連識別子 https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-13640108/136401082002kenkyu_seika_hokoku_gaiyo/
関連名称 https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-13640108/136401082002kenkyu_seika_hokoku_gaiyo/
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-27 14:40:51.186297
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3