{"created":"2023-07-27T06:53:50.460236+00:00","id":48849,"links":{},"metadata":{"_buckets":{"deposit":"eed012c6-bae2-48bc-b764-52f2746d8017"},"_deposit":{"created_by":18,"id":"48849","owners":[18],"pid":{"revision_id":0,"type":"depid","value":"48849"},"status":"published"},"_oai":{"id":"oai:kanazawa-u.repo.nii.ac.jp:00048849","sets":["2812:2813:2815"]},"author_link":["16649","3021"],"item_9_biblio_info_8":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2019-06-18","bibliographicIssueDateType":"Issued"},"bibliographicPageStart":"4p.","bibliographicVolumeNumber":"2015-04-01 - 2019-03-31","bibliographic_titles":[{"bibliographic_title":"平成30(2018)年度 科学研究費補助金 基盤研究(C) 研究成果報告書"},{"bibliographic_title":"2018 Fiscal Year Final Research Report","bibliographic_titleLang":"en"}]}]},"item_9_creator_33":{"attribute_name":"著者別表示","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Kawakami, Yu"}],"nameIdentifiers":[{"nameIdentifier":"16649","nameIdentifierScheme":"WEKO"},{"nameIdentifier":"60532356","nameIdentifierScheme":"金沢大学研究者情報","nameIdentifierURI":"http://ridb.kanazawa-u.ac.jp/public/detail.php?kaken=60532356"},{"nameIdentifier":"60532356","nameIdentifierScheme":"研究者番号","nameIdentifierURI":"https://nrid.nii.ac.jp/nrid/1000060532356"}]}]},"item_9_description_21":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"4次元ユークリッド空間内の完備極小曲面のガウス写像の像の性質の研究を行った.特に,除外値数の上限や一意性定理といったガウス写像の値分布論的性質の最良の結果とその幾何学的解釈を与えた.またその応用として,複素2次元空間内の完備極小ラグランジアン曲面のガウス写像及び4次元ユークリッド空間内の向き付け不可能な完備極小曲面の一般化されたガウス写像の像の大きさの最良の評価を与えた.また,3次元ローレンツ・ミンコフスキー空間の極大曲面および3次元ド・ジッター空間内の平均曲率1の曲面の解析的延長とそれに関連した大域的性質を調べた.","subitem_description_type":"Abstract"},{"subitem_description":"We perform a systematic study of the images of the Gauss maps of complete minimal surfaces in Euclidean 4-space. In particular, we give a geometric interpretation of value-distribution theoretic properties for the Gauss maps of complete minimal surfaces in Euclidean 4-space, for example, the maximal number of exceptional values and unicity theorem. We also provide optimal results of the size of the image under the Gauss map of a complete minimal Lagrangian surface in the complex 2-space and the generalized Gauss map of a complete nonorientable minimal surface in Euclidean 4-space. We also study the analytic extensions and related global properties of maximal surfaces in the Lorentz-Minkowski 3-space and CMC-1 surfaces in the de-Sitter 3-space.","subitem_description_type":"Abstract"}]},"item_9_description_22":{"attribute_name":"内容記述","attribute_value_mlt":[{"subitem_description":"研究課題/領域番号:15K04840, 研究期間(年度):2015-04-01 - 2019-03-31","subitem_description_type":"Other"},{"subitem_description":"出典:研究課題「ガウス写像の値分布論の進展とそれに基づく曲面の大域的性質の研究」課題番号15K04840\n(KAKEN:科学研究費助成事業データベース(国立情報学研究所)) \n(https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-15K04840/15K04840seika/)を加工して作成","subitem_description_type":"Other"}]},"item_9_identifier_registration":{"attribute_name":"ID登録","attribute_value_mlt":[{"subitem_identifier_reg_text":"10.24517/00055168","subitem_identifier_reg_type":"JaLC"}]},"item_9_publisher_17":{"attribute_name":"公開者","attribute_value_mlt":[{"subitem_publisher":"金沢大学理工研究域数物科学系"}]},"item_9_relation_28":{"attribute_name":"関連URI","attribute_value_mlt":[{"subitem_relation_name":[{"subitem_relation_name_text":"https://kaken.nii.ac.jp/search/?qm=60532356"}],"subitem_relation_type_id":{"subitem_relation_type_id_text":"https://kaken.nii.ac.jp/search/?qm=60532356","subitem_relation_type_select":"URI"}},{"subitem_relation_name":[{"subitem_relation_name_text":"https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-15K04840/"}],"subitem_relation_type_id":{"subitem_relation_type_id_text":"https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-15K04840/","subitem_relation_type_select":"URI"}},{"subitem_relation_name":[{"subitem_relation_name_text":"https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-15K04840/15K04840seika/"}],"subitem_relation_type_id":{"subitem_relation_type_id_text":"https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-15K04840/15K04840seika/","subitem_relation_type_select":"URI"}}]},"item_9_version_type_25":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_ab4af688f83e57aa","subitem_version_type":"AM"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"川上, 裕"}],"nameIdentifiers":[{"nameIdentifier":"3021","nameIdentifierScheme":"WEKO"},{"nameIdentifier":"60532356","nameIdentifierScheme":"e-Rad","nameIdentifierURI":"https://kaken.nii.ac.jp/ja/search/?qm=60532356"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2020-04-27"}],"displaytype":"detail","filename":"SC-PR-KAWAKAMI-Y-kaken 2019-4p.pdf","filesize":[{"value":"91.4 kB"}],"format":"application/pdf","licensetype":"license_11","mimetype":"application/pdf","url":{"label":"SC-PR-KAWAKAMI-Y-kaken 2019-4p.pdf","url":"https://kanazawa-u.repo.nii.ac.jp/record/48849/files/SC-PR-KAWAKAMI-Y-kaken 2019-4p.pdf"},"version_id":"561d08ad-e713-4278-aaf3-f0d6813275d2"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"research report","resourceuri":"http://purl.org/coar/resource_type/c_18ws"}]},"item_title":"ガウス写像の値分布論の進展とそれに基づく曲面の大域的性質の研究","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"ガウス写像の値分布論の進展とそれに基づく曲面の大域的性質の研究"},{"subitem_title":"Development of value distribution theory of Gauss maps of immersed surfaces in space forms and their applications to global property of surfaces","subitem_title_language":"en"}]},"item_type_id":"9","owner":"18","path":["2815"],"pubdate":{"attribute_name":"公開日","attribute_value":"2020-04-27"},"publish_date":"2020-04-27","publish_status":"0","recid":"48849","relation_version_is_last":true,"title":["ガウス写像の値分布論の進展とそれに基づく曲面の大域的性質の研究"],"weko_creator_id":"18","weko_shared_id":-1},"updated":"2024-07-01T05:30:15.885275+00:00"}