ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. N. 科研費研究成果報告書, JSTプロジェクト報告書, COE報告書
  2. n-1. 科学研究費成果報告書
  3. 平成17(2005)年度

熱方程式にかかわる逆問題の確率制御理論に基づく研究

https://doi.org/10.24517/00063124
https://doi.org/10.24517/00063124
2cfb8de3-c0b3-4556-ad55-2781dd5115d6
名前 / ファイル ライセンス アクション
TE-PR-TSUCHIYA-M-kaken TE-PR-TSUCHIYA-M-kaken 2007-2p.pdf (109.3 kB)
license.icon
Item type 報告書 / Research Paper(1)
公開日 2021-11-08
タイトル
タイトル 熱方程式にかかわる逆問題の確率制御理論に基づく研究
タイトル
タイトル Investigation of Inverse Problems for the Heat equation Based on the Theory of Stochastic Control
言語 en
言語
言語 jpn
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18ws
資源タイプ research report
ID登録
ID登録 10.24517/00063124
ID登録タイプ JaLC
著者 土谷, 正明

× 土谷, 正明

WEKO 99456
e-Rad 50016101

土谷, 正明

Search repository
提供者所属
内容記述タイプ Other
内容記述 金沢大学自然科学研究科
書誌情報 平成17(2005)年度 科学研究費補助金 基盤研究(C) 研究成果報告書概要
en : 2005 Fiscal Year Final Research Report Summary

巻 2004 – 2005, p. 2p., 発行日 2007-12-12
抄録
内容記述タイプ Abstract
内容記述 熱方程式にかかわる逆問題として領域形状の推定および拡散係数の推定問題を扱った.前者は領域の変換を通じて領域の形状を表す関数が係数やデータの中に取り込まれ,それを推定することになり後者と同種の問題とみなすことができる.前者の問題については解析的な方法を主に検討し結果を得た.領域の形状や境界の滑らかさおよび方程式の形のいずれにおいても従来の研究で扱われていたものをかなり一般化した.特に変形面の形状を与える関数についてはリプシッツ連続性のみを仮定し,しかも時間的な変動を許した場合をも扱って,形状の推定に関する新たな方法を提案し,計算上での実効性ならびにその理論的な根拠および安定性も示した.これらの成果は2006年7月の北大での逆問題の国際研究集会で公表の予定である.
また係数推定の確率制御論的な考察をする際には観測場所の局所時間をもとにしたランニングコストを使う必要があるが,これは対応するハミルトン・ヤコービ・ベルマン方程式のソース項に相当するところに局所時間の台にマスをもつデルタ関数が現れることを導き,従来と異なる確率制御問題になることを示した.これらは今後整理の上公表する予定である.
さらに確率制御理論の立場から関連する資源消費に関する連続時間のジャンプ過程を考察し,対応する最適制御問題を定式化して適当な仮定のもとで具体的な最適制御変数を求め公表した.
研究課題を考察するために必要な直交関数系については,ハーディー空間で成り立つ古典的なハーディーの不等式をヤコビ級数の場合に拡張した.またハンケル変換に関する移植作用素がハーディー空間において有界であること示し,それを利用して一般化したチェザロ作用素の有界性を導いた.以上はすべて公表または公表予定である.
また研究課題を実際的な局面に応用する際に数値計算が必要になる.その際に必要になる乱数に関連して,マルコフ連鎖の生成するスペクトル拡散系列の具体的な構成法およびマルコフ連鎖の混合性との関連を調べた.更に離散化されたマルコフ変換における超離散力学系の例を構成し公表した.
抄録
内容記述タイプ Abstract
内容記述 We study the inverse problem determining the shape of some unknown portion of the boundary of a domain based on parabolic equations and also study the one determining the heat conduction coefficients of a heat equation based on the theory of stochastic control. The former is treated through a suitably linearized equation by analytical method. The shape of deforming unknown portion is allowed depending on time and is assumed only to be Lipschitz continuous. The latter provides us with a new type of stochastic control. That is, the running cost is driven by the local time at the measurement place with respect to the controlled diffusion process. Therefore the corresponding HJB equation has singular source term involving the Dirac function supported on the measurement place.
In the framework of stochastic control, we also consider some jump process concerned with common property resource and obtain an optimal control variable under suitable conditions.
Related to the subject, we need to study some property of systems of orthogonal functions. In particular, the classical Hardy's inequality is extended to the case of Jacobi series and the boundedness of the transplantation operators and Cesaro operators are obtained.
Finally, from a viewpoint of numerical analysis, we study some random sequences. An ultradiscrete dynamical system is constructed under consideration of discretized Markov transforms and bit error probabilities of certain communication systems are discussed by using spreading sequences of Markov chains.
内容記述
内容記述タイプ Other
内容記述 研究課題/領域番号:16540100, 研究期間(年度):2004 – 2005
内容記述
内容記述タイプ Other
内容記述 出典:「熱方程式にかかわる逆問題の確率制御理論に基づく研究」研究成果報告書 課題番号16540100
(KAKEN:科学研究費助成事業データベース(国立情報学研究所))
(https://kaken.nii.ac.jp/ja/report/KAKENHI-PROJECT-16540100/165401002005kenkyu_seika_hokoku_gaiyo/)を加工して作成
著者版フラグ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
関連URI
識別子タイプ URI
関連識別子 https://nrid.nii.ac.jp/ja/search/?kw=50016101
関連名称 https://nrid.nii.ac.jp/ja/search/?kw=50016101
関連URI
識別子タイプ URI
関連識別子 https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-16540100/
関連名称 https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-16540100/
関連URI
識別子タイプ URI
関連識別子 https://kaken.nii.ac.jp/ja/report/KAKENHI-PROJECT-16540100/165401002005kenkyu_seika_hokoku_gaiyo/
関連名称 https://kaken.nii.ac.jp/ja/report/KAKENHI-PROJECT-16540100/165401002005kenkyu_seika_hokoku_gaiyo/
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-27 14:25:17.104966
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3