@article{oai:kanazawa-u.repo.nii.ac.jp:00058978, author = {小川, 数馬 and 北村, 暘二 and 柴, 和弘 and 小谷, 明 and Ogawa, Kazuma and Ishizaki, Atsushi and Takai, Kenichiro and Kitamura, Yoji and Kiwada, Tatsuto and Shiba, Kazuhiro and Odani, Akira}, issue = {12}, journal = {PLoS ONE}, month = {Dec}, note = {68Ga (T1/2 = 68 min, a generator-produced nuclide) has great potential as a radionuclide for clinical positron emission tomography (PET). Because poly-glutamic and poly-aspartic acids have high affinity for hydroxyapatite, to develop new bone targeting 68Ga-labeled bone imaging agents for PET, we used 1,4,7,10-tetraazacyclododecane-1,4,7,10- tetraacetic acid (DOTA) as a chelating site and conjugated aspartic acid peptides of varying lengths. Subsequently, we compared Ga complexes, Ga-DOTA-(Asp)n (n = 2, 5, 8, 11, or 14) with easy-to-handle 67Ga, with the previously described 67Ga-DOTA complex conjugated bisphosphonate, 67Ga-DOTA-Bn-SCN-HBP. After synthesizing DOTA-(Asp)n by a Fmoc-based solid-phase method, complexes were formed with 67Ga, resulting in 67Ga-DOTA-(Asp)n with a radiochemical purity of over 95% after HPLC purification. In hydroxyapatite binding assays, the binding rate of 67Ga-DOTA-(Asp)n increased with the increase in the length of the conjugated aspartate peptide. Moreover, in biodistribution experiments, 67Ga-DOTA-(Asp) 8, 67Ga-DOTA-(Asp)11, and 67Ga-DOTA- (Asp)14 showed high accumulation in bone (10.5±1.5, 15.1±2.6, and 12.8±1.7% ID/g, respectively) but were barely observed in other tissues at 60 min after injection. Although bone accumulation of 67Ga-DOTA-(Asp)n was lower than that of 67Ga-DOTA-Bn-SCN-HBP, blood clearance of 67Ga-DOTA-(Asp)n was more rapid. Accordingly, the bone/blood ratios of 67Ga-DOTA-(Asp) 11 and 67Ga-DOTA-(Asp)14 were comparable with those of 67Ga-DOTA-Bn-SCN-HBP. In conclusion, these data provide useful insights into the drug design of 68Ga-PET tracers for the diagnosis of bone disorders, such as bone metastases. © 2013 Ogawa et al., CC-BY 4.0, 金沢大学疾患モデル総合研究センター}, title = {Development of novel radiogallium-labeled bone imaging agents using oligo-aspartic acid peptides as carriers}, volume = {8}, year = {2013} }