@article{oai:kanazawa-u.repo.nii.ac.jp:00060834, author = {古川, 敦 and Furukawa, Atsushi and Meguro, Manami and Yamazaki, Rika and Watanabe, Hiroshi and Takahashi, Ami and Kuroki, Kimiko and Maenaka, Katsumi}, issue = {23}, journal = {International Journal of Molecular Sciences}, month = {Dec}, note = {The human leucocyte antigen (HLA)-G, which consists of seven splice variants, is a tolerogenic immune checkpoint molecule. It plays an important role in the protection of the fetus from the maternal immune response by binding to inhibitory receptors, including leukocyte Ig-like receptors (LILRs). Recent studies have also revealed that HLA-G is involved in the progression of cancer cells and the protection from autoimmune diseases. In contrast to its well characterized isoform, HLA-G1, the binding activities of other major HLA-G isoforms, such as HLA-G2, toward available anti-HLA-G antibodies are only partially understood. Here, we investigate the binding specificities of anti-HLA-G antibodies by using surface plasmon resonance. MEM-G9 and G233 showed strong affinities to HLA-G1, with a nM range for their dissociation constants, but did not show affinities to HLA-G2. The disulfide-linker HLA-G1 dimer further exhibited significant avidity effects. On the other hand, 4H84 and MEM-G1, which can be used for the Western blotting of HLA-G isoforms, can bind to native HLA-G2, while MEM-G9 and G233 cannot. These results reveal that HLA-G2 has a partially intrinsically disordered structure. Furthermore, MEM-G1, but not 4H84, competes with the LILRB2 binding of HLA-G2. These results provide novel insight into the functional characterization of HLA-G isoforms and their detection systems. © 2019 by the authors. Licensee MDPI, Basel, Switzerland., 金沢大学医薬保健研究域薬学系}, title = {Evaluation of the reactivity and receptor competition of HLA-G isoforms toward available antibodies: Implications of structural characteristics of HLA-G isoforms}, volume = {20}, year = {2019} }