ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. B. 理工学域; 数物科学類・物質化学類・機械工学類・フロンティア工学類・電子情報通信学類・地球社会基盤学類・生命理工学類
  2. b 10. 学術雑誌掲載論文
  3. 1.査読済論文(工)

An adaptive penalty-based learning extension for the backpropagation family

http://hdl.handle.net/2297/5647
http://hdl.handle.net/2297/5647
e88428ca-57cb-456c-8e95-c4a62e9c74b1
名前 / ファイル ライセンス アクション
TE-PR-NAKAYAMA-K-2140.pdf TE-PR-NAKAYAMA-K-2140.pdf (324.6 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2017-10-03
タイトル
タイトル An adaptive penalty-based learning extension for the backpropagation family
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Jansen, Boris

× Jansen, Boris

WEKO 10213

Jansen, Boris

Search repository
Nakayama, Kenji

× Nakayama, Kenji

WEKO 353
e-Rad 00207945
研究者番号 00207945

Nakayama, Kenji

Search repository
提供者所属
内容記述タイプ Other
内容記述 金沢大学大学院自然科学研究科情報システム
書誌情報 IEICE transactions on fundamentals of electronics, communications and computer sciences

巻 E89-A, 号 8, p. 2140-2148, 発行日 2006-08-01
ISSN
収録物識別子タイプ ISSN
収録物識別子 0916-8508
NCID
収録物識別子タイプ NCID
収録物識別子 AA0086650X
DOI
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 https://doi.org/10.1093/ietfec/e89-a.8.2140
抄録
内容記述タイプ Abstract
内容記述 Over the years, many improvements and refinements to the backpropagation learning algorithm have been reported. In this paper, a new adaptive penalty-based learning extension for the backpropagation learning algorithm and its variants is proposed. The new method initially puts pressure on artificial neural networks in order to get all outputs for all training patterns into the correct half of the output range, instead of mainly focusing on minimizing the difference between the target and actual output values. The upper bound of the penalty values is also controlled. The technique is easy to implement and computationally inexpensive. In this study, the new approach is applied to the backpropagation learning algorithm as well as the RPROP learning algorithm. The superiority of the new proposed method is demonstrated though many simulations. By applying the extension, the percentage of successful runs can be greatly increased and the average number of epochs to convergence can be well reduced on various problem instances. The behavior of the penalty values during training is also analyzed and their active role within the learning process is confirmed. Copyright © 2006 The Institute of Electronics, Information and Communication Engineers.
権利
権利情報 (社)電子情報通信学会の許諾を得て登録
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-27 11:04:03.936706
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3