ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. B. 理工学域; 数物科学類・物質化学類・機械工学類・フロンティア工学類・電子情報通信学類・地球社会基盤学類・生命理工学類
  2. b 10. 学術雑誌掲載論文
  3. 1.査読済論文(工)

A hybrid nonlinear predictor: Analysis of learning process and predictability for noisy time series

http://hdl.handle.net/2297/5645
http://hdl.handle.net/2297/5645
14bc6567-deda-482e-9216-1753c49a70b0
名前 / ファイル ライセンス アクション
TE-PR-NAKAYAMA-K-1420.pdf TE-PR-NAKAYAMA-K-1420.pdf (525.1 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2017-10-03
タイトル
タイトル A hybrid nonlinear predictor: Analysis of learning process and predictability for noisy time series
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Khalaf, Ashraf A.M.

× Khalaf, Ashraf A.M.

WEKO 10263

Khalaf, Ashraf A.M.

Search repository
Nakayama, Kenji

× Nakayama, Kenji

WEKO 353
e-Rad 00207945
研究者番号 00207945

Nakayama, Kenji

Search repository
提供者所属
内容記述タイプ Other
内容記述 金沢大学大学院自然科学研究科情報システム
書誌情報 IEICE transactions on fundamentals of electronics, communications and computer sciences

巻 E82-A, 号 8, p. 1420-1427, 発行日 1999-08-01
ISSN
収録物識別子タイプ ISSN
収録物識別子 0916-8508
NCID
収録物識別子タイプ NCID
収録物識別子 AA0086650X
抄録
内容記述タイプ Abstract
内容記述 A nonlinear time series predictor was proposed, in which a nonlinear sub-predictor (NSP) and a linear subpredictor (LSP) are combined in a cascade form. This model is called hybrid predictor here. The nonlinearity analysis method of the input time series was also proposed to estimate the network size. We have considered the nonlinear prediction problem as a pattern mapping one. A multi-layer neural network, which consists of sigmoidal hidden neurons and a single linear output neuron, has been employed as a nonlinear sub-predictor. Since the NSP includes nonlinear functions, it can predict the nonlinearity of the input time series. However, the prediction is not complete in some cases. Therefore, the NSP prediction error is further compensated for by employing a linear sub-predictor after the NSP. In this paper, the prediction mechanism and a role of the NSP and the LSP are theoretically and experimentally analyzed. The role of the NSP is to predict the nonlinear and some part of the linear property of the time series. The LSP works to predict the NSP prediction error. Furthermore, predictability of the hybrid predictor for noisy time series is investigated. The sigmoidal functions used in the NSP can suppress the noise effects by using their saturation regions. Computer simulations, using several kinds of nonlinear time series and other conventional predictor models, are demonstrated. The theoretical analysis of the predictor mechanism is confirmed through these simulations. Furthermore, predictability is improved by slightly expanding or shifting the input potential of the hidden neurons toward the saturation regions in the learning process.
権利
権利情報 (社)電子情報通信学会の許諾を得て登録
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-27 09:40:12.199116
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3