ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. H-4. 設計製造技術研究所
  2. h-4 10. 学術雑誌掲載論文
  3. 1. 査読済論文

Sequential Approximate Optimization using Radial Basis Function network for engineering optimization

https://doi.org/10.24517/00008486
https://doi.org/10.24517/00008486
5ad5725c-fa38-471a-9545-bdbbc254aa33
名前 / ファイル ライセンス アクション
TE-PR-KITAYAMA-S-535.pdf TE-PR-KITAYAMA-S-535.pdf (765.8 kB)
license.icon
Item type 学術雑誌論文 / Journal Article(1)
公開日 2017-10-03
タイトル
タイトル Sequential Approximate Optimization using Radial Basis Function network for engineering optimization
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
ID登録
ID登録 10.24517/00008486
ID登録タイプ JaLC
著者 Kitayama, Satoshi

× Kitayama, Satoshi

WEKO 275
e-Rad 90339698
金沢大学研究者情報 90339698
研究者番号 90339698

Kitayama, Satoshi

Search repository
Arakawa, Masao

× Arakawa, Masao

WEKO 9858
e-Rad 20257207

Arakawa, Masao

Search repository
Yamazaki, Koetsu

× Yamazaki, Koetsu

WEKO 9720
e-Rad 70110608
金沢大学研究者情報 70110608
研究者番号 70110608

Yamazaki, Koetsu

Search repository
著者別表示 北山, 哲士

× 北山, 哲士

北山, 哲士

Search repository
荒川, 雅生

× 荒川, 雅生

荒川, 雅生

Search repository
山崎, 光悦

× 山崎, 光悦

山崎, 光悦

Search repository
提供者所属
内容記述タイプ Other
内容記述 金沢大学理工研究域機械工学系
書誌情報 Optimization and Engineering

巻 12, 号 4, p. 535-557, 発行日 2011-12-01
ISSN
収録物識別子タイプ ISSN
収録物識別子 1389-4420
NCID
収録物識別子タイプ NCID
収録物識別子 AA11484866
DOI
関連タイプ isVersionOf
識別子タイプ DOI
関連識別子 10.1007/s11081-010-9118-y
出版者
出版者 Springer Science+Business Media, LLC
抄録
内容記述タイプ Abstract
内容記述 This paper presents a Sequential Approximate Optimization (SAO) procedure that uses the Radial Basis Function (RBF) network. If the objective and constraints are not known explicitly but can be evaluated through a computationally intensive numerical simulation, the response surface, which is often called meta-modeling, is an attractive method for finding an approximate global minimum with a small number of function evaluations. An RBF network is used to construct the response surface. The Gaussian function is employed as the basis function in this paper. In order to obtain the response surface with good approximation, the width of this Gaussian function should be adjusted. Therefore, we first examine the width. Through this examination, some sufficient conditions are introduced. Then, a simple method to determine the width of the Gaussian function is proposed. In addition, a new technique called the adaptive scaling technique is also proposed. The sufficient conditions for the width are satisfied by introducing this scaling technique. Second, the SAO algorithm is developed. The optimum of the response surface is taken as a new sampling point for local approximation. In addition, it is necessary to add new sampling points in the sparse region for global approximation. Thus, an important issue for SAO is to determine the sparse region among the sampling points. To achieve this, a new function called the density function is constructed using the RBF network. The global minimum of the density function is taken as the new sampling point. Through the sampling strategy proposed in this paper, the approximate global minimum can be found with a small number of function evaluations. Through numerical examples, the validities of the width and sampling strategy are examined in this paper. © 2010 Springer Science+Business Media, LLC.
著者版フラグ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-27 10:23:58.242559
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3