ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. B. 理工学域; 数物科学類・物質化学類・機械工学類・フロンティア工学類・電子情報通信学類・地球社会基盤学類・生命理工学類
  2. b 10. 学術雑誌掲載論文
  3. 1.査読済論文(工)

Pitch extraction and voiced/unvoiced detection of speech by cross-coupling multi-layered neural network with feedback architecture

http://hdl.handle.net/2297/43970
http://hdl.handle.net/2297/43970
f99bcfc1-8f8d-4c2d-899f-cc6157da00b4
名前 / ファイル ライセンス アクション
TE-PR-FUNAADA-T-48-58.pdf TE-PR-FUNAADA-T-48-58.pdf (713.2 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2017-10-03
タイトル
タイトル Pitch extraction and voiced/unvoiced detection of speech by cross-coupling multi-layered neural network with feedback architecture
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Miyabayashi, Hideo

× Miyabayashi, Hideo

WEKO 13532

Miyabayashi, Hideo

Search repository
Funada, Tetsuo

× Funada, Tetsuo

WEKO 9834
e-Rad 40019766
研究者番号 40019766

Funada, Tetsuo

Search repository
書誌情報 Electronics and Communications in Japan (Part III: Fundamental Electronic Science)

巻 80, 号 9, p. 48-58, 発行日 1997-09-01
ISSN
収録物識別子タイプ ISSN
収録物識別子 1042-0967
NCID
収録物識別子タイプ NCID
収録物識別子 AA11330851
DOI
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 https://doi.org/10.1002/(sici)1520-6440(199709)80:9<48::aid-ecjc6>3.0.co;2-w
出版者
出版者 電子情報通信学会 = (THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS
抄録
内容記述タイプ Abstract
内容記述 Pitch frequency is one of the most important voice characteristics, and its accurate extraction is important not only in speech analysis and synthesis, but also in speech coding, speech recognition, speaker recognition, and the like. Existing methods of improving extraction accuracy include waveform processing, correlative processing, and spectral processing. This paper describes the use of a neural network to extract pitch from voice features delivered from the bandpass filter pairs (BPFPs) proposed by Fonda et al. Three types of multi-layered neural networks able to learn time-continuity and high accuracy discrimination functions and have a recurrent structure are tested. The cross-coupling multi-layered neural network with feedback architecture gives the best improvement over conventional neural networks, and exhibits superior ability for learning time continuity of pitch and U/V information. © 1997 Scripta Technica, Inc. Electron Comm Jpn Pt 3, 80(9): 48–58, 1997.
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
関連URI
識別子タイプ URI
関連識別子 https://www.ieice.org/jpn/
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-27 12:15:09.209805
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3