ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. B. 理工学域; 数物科学類・物質化学類・機械工学類・フロンティア工学類・電子情報通信学類・地球社会基盤学類・生命理工学類
  2. b 10. 学術雑誌掲載論文
  3. 1.査読済論文(工)

A Breast Cancer Classifier using a Neuron Model with Dendritic Nonlinearity

http://hdl.handle.net/2297/44377
http://hdl.handle.net/2297/44377
6f445c28-ab2f-4dbd-adaf-16a5f22416e2
名前 / ファイル ライセンス アクション
TE-PR-TODO-Y-1365.pdf TE-PR-TODO-Y-1365.pdf (1.5 MB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2017-10-03
タイトル
タイトル A Breast Cancer Classifier using a Neuron Model with Dendritic Nonlinearity
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Sha, Zijun

× Sha, Zijun

WEKO 13609

Sha, Zijun

Search repository
Hu, Liu

× Hu, Liu

WEKO 13610

Hu, Liu

Search repository
Todo, Yuki

× Todo, Yuki

WEKO 11731
金沢大学研究者情報 70636927
研究者番号 70636927

Todo, Yuki

Search repository
Ji, Junkai

× Ji, Junkai

WEKO 13611

Ji, Junkai

Search repository
Gao, Shangce

× Gao, Shangce

WEKO 13612

Gao, Shangce

Search repository
Tang, Zheng

× Tang, Zheng

WEKO 13613

Tang, Zheng

Search repository
書誌情報 IEICE TRANSACTIONS on Information and Systems

巻 E98-D, 号 7, p. 1365-1376, 発行日 2015-07-01
ISSN
収録物識別子タイプ ISSN
収録物識別子 1745-1337
NCID
収録物識別子タイプ NCID
収録物識別子 AA11510296
DOI
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 https://doi.org/10.1587/transinf.2014edp7418
出版者
出版者 IEICE = 電子情報通信学会 / Wiley-Blackwell
抄録
内容記述タイプ Abstract
内容記述 Breast cancer is a serious disease across the world, and it is one of the largest causes of cancer death for women. The traditional diagnosis is not only time consuming but also easily affected. Hence, artificial intelligence (AI), especially neural networks, has been widely used to assist to detect cancer. However, in recent years, the computational ability of a neuron has attracted more and more attention. The main computational capacity of a neuron is located in the dendrites. In this paper, a novel neuron model with dendritic nonlinearity (NMDN) is proposed to classify breast cancer in the Wisconsin Breast Cancer Database (WBCD). In NMDN, the dendrites possess nonlinearity when realizing the excitatory synapses, inhibitory synapses, constant-1 synapses and constant-0 synapses instead of being simply weighted. Furthermore, the nonlinear interaction among the synapses on a dendrite is defined as a product of the synaptic inputs. The soma adds all of the products of the branches to produce an output. A back-propagation-based learning algorithm is introduced to train the NMDN. The performance of the NMDN is compared with classic back propagation neural networks (BPNNs). Simulation results indicate that NMDN possesses superior capability in terms of the accuracy, convergence rate, stability and area under the ROC curve (AUC). Moreover, regarding ROC, for continuum values, the existing 0-connections branches after evolving can be eliminated from the dendrite morphology to release computational load, but with no influence on the performance of classification. The results disclose that the computational ability of the neuron has been undervalued, and the proposed NMDN can be an interesting choice for medical researchers in further research. Copyright © 2015 The Institute of Electronics, Information and Communication Engineers.
内容記述
内容記述タイプ Other
内容記述 Embargo Period 6 months
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
関連URI
識別子タイプ URI
関連識別子 https://www.jstage.jst.go.jp/browse/transinf
関連URI
識別子タイプ URI
関連識別子 https://www.ieice.org/jpn/
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-27 08:56:22.173224
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3