WEKO3
アイテム
{"_buckets": {"deposit": "161d5e50-b846-4724-afd1-679adc981501"}, "_deposit": {"created_by": 3, "id": "9455", "owners": [3], "pid": {"revision_id": 0, "type": "depid", "value": "9455"}, "status": "published"}, "_oai": {"id": "oai:kanazawa-u.repo.nii.ac.jp:00009455", "sets": ["936"]}, "author_link": ["11731", "13616", "13615", "13617", "13614"], "item_4_biblio_info_8": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2015-01-01", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "1", "bibliographicPageEnd": "377", "bibliographicPageStart": "362", "bibliographicVolumeNumber": "E98-A", "bibliographic_titles": [{"bibliographic_title": "IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences"}]}]}, "item_4_description_21": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "The emergence of nature-inspired algorithms (NIA) is a great milestone in the field of computational intelligence community. As one of the NIAs, the artificial immune algorithm (AIS) mimics the principles of the biological immune system, and has exhibited its effectiveness, implicit parallelism, flexibility and applicability when solving various engineering problems. Nevertheless, AIS still suffers from the issues of evolution premature, local minima trapping and slow convergence due to its inherent stochastic search dynamics. Much effort has been made to improve the search performance of AIS from different aspects, such as population diversity maintenance, adaptive parameter control, etc. In this paper, we propose a novel multi-learning operator into the AIS to further enrich the search dynamics of the algorithm. A framework of embedding multiple commonly used mutation operators into the antibody evolution procedure is also established. Four distinct learning operators including baldwinian learning, cauchy mutation, gaussian mutation and lateral mutation are selected to merge together as a multi-learning operator. It can be expected that the multi-learning operator can effectively balance the exploration and exploitation of the search by enriched dynamics. To verify its performance, the proposed algorithm, which is called multi-learning immune algorithm (MLIA), is applied on a number of benchmark functions. Experimental results demonstrate the superiority of the proposed algorithm in terms of convergence speed and solution quality. Copyright © 2015 The Institute of Electronics, Information and Communication Engineers.", "subitem_description_type": "Abstract"}]}, "item_4_description_22": {"attribute_name": "内容記述", "attribute_value_mlt": [{"subitem_description": "Embargo Period 6 months", "subitem_description_type": "Other"}]}, "item_4_publisher_17": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "IEICE = 電子情報通信学会 / Wiley-Blackwell"}]}, "item_4_relation_12": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type": "isIdenticalTo", "subitem_relation_type_id": {"subitem_relation_type_id_text": "https://doi.org/10.1587/transfun.e98.a.362", "subitem_relation_type_select": "DOI"}}]}, "item_4_relation_28": {"attribute_name": "関連URI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "https://www.jstage.jst.go.jp/browse/transinf", "subitem_relation_type_select": "URI"}}, {"subitem_relation_type_id": {"subitem_relation_type_id_text": "https://www.ieice.org/jpn/", "subitem_relation_type_select": "URI"}}]}, "item_4_source_id_11": {"attribute_name": "NCID", "attribute_value_mlt": [{"subitem_source_identifier": "AA11510296", "subitem_source_identifier_type": "NCID"}]}, "item_4_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1745-1337", "subitem_source_identifier_type": "ISSN"}]}, "item_4_version_type_25": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_970fb48d4fbd8a85", "subitem_version_type": "VoR"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Wang, Shuaiqun"}], "nameIdentifiers": [{"nameIdentifier": "13614", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Gao, Shangce"}], "nameIdentifiers": [{"nameIdentifier": "13615", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Aorigele"}], "nameIdentifiers": [{"nameIdentifier": "13616", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Todo, Yuki"}], "nameIdentifiers": [{"nameIdentifier": "11731", "nameIdentifierScheme": "WEKO"}, {"nameIdentifier": "70636927", "nameIdentifierScheme": "金沢大学研究者情報", "nameIdentifierURI": "http://ridb.kanazawa-u.ac.jp/public/detail.php?kaken=70636927"}, {"nameIdentifier": "70636927", "nameIdentifierScheme": "研究者番号", "nameIdentifierURI": "https://nrid.nii.ac.jp/nrid/1000070636927"}]}, {"creatorNames": [{"creatorName": "Tang, Zheng"}], "nameIdentifiers": [{"nameIdentifier": "13617", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2017-10-03"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "TE-PR-TODO-Y-362.pdf", "filesize": [{"value": "2.6 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 2600000.0, "url": {"label": "TE-PR-TODO-Y-362.pdf", "url": "https://kanazawa-u.repo.nii.ac.jp/record/9455/files/TE-PR-TODO-Y-362.pdf"}, "version_id": "a5f306bd-34fe-4fc2-afa6-50816a257948"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "Artificial immune algorithm", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Hybridization", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Immune algorithm", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Multi-learning", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Mutation operators", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "A Multi-learning Immune Algorithm for Numerical Optimization", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "A Multi-learning Immune Algorithm for Numerical Optimization"}]}, "item_type_id": "4", "owner": "3", "path": ["936"], "permalink_uri": "http://hdl.handle.net/2297/44379", "pubdate": {"attribute_name": "公開日", "attribute_value": "2017-10-03"}, "publish_date": "2017-10-03", "publish_status": "0", "recid": "9455", "relation": {}, "relation_version_is_last": true, "title": ["A Multi-learning Immune Algorithm for Numerical Optimization"], "weko_shared_id": 3}
A Multi-learning Immune Algorithm for Numerical Optimization
http://hdl.handle.net/2297/44379
http://hdl.handle.net/2297/44379b7b429ec-80bd-4eab-a81e-6cfa20fda077
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2017-10-03 | |||||
タイトル | ||||||
タイトル | A Multi-learning Immune Algorithm for Numerical Optimization | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
著者 |
Wang, Shuaiqun
× Wang, Shuaiqun× Gao, Shangce× Aorigele× Todo, Yuki× Tang, Zheng |
|||||
書誌情報 |
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences 巻 E98-A, 号 1, p. 362-377, 発行日 2015-01-01 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 1745-1337 | |||||
NCID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA11510296 | |||||
DOI | ||||||
関連タイプ | isIdenticalTo | |||||
識別子タイプ | DOI | |||||
関連識別子 | https://doi.org/10.1587/transfun.e98.a.362 | |||||
出版者 | ||||||
出版者 | IEICE = 電子情報通信学会 / Wiley-Blackwell | |||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | The emergence of nature-inspired algorithms (NIA) is a great milestone in the field of computational intelligence community. As one of the NIAs, the artificial immune algorithm (AIS) mimics the principles of the biological immune system, and has exhibited its effectiveness, implicit parallelism, flexibility and applicability when solving various engineering problems. Nevertheless, AIS still suffers from the issues of evolution premature, local minima trapping and slow convergence due to its inherent stochastic search dynamics. Much effort has been made to improve the search performance of AIS from different aspects, such as population diversity maintenance, adaptive parameter control, etc. In this paper, we propose a novel multi-learning operator into the AIS to further enrich the search dynamics of the algorithm. A framework of embedding multiple commonly used mutation operators into the antibody evolution procedure is also established. Four distinct learning operators including baldwinian learning, cauchy mutation, gaussian mutation and lateral mutation are selected to merge together as a multi-learning operator. It can be expected that the multi-learning operator can effectively balance the exploration and exploitation of the search by enriched dynamics. To verify its performance, the proposed algorithm, which is called multi-learning immune algorithm (MLIA), is applied on a number of benchmark functions. Experimental results demonstrate the superiority of the proposed algorithm in terms of convergence speed and solution quality. Copyright © 2015 The Institute of Electronics, Information and Communication Engineers. | |||||
内容記述 | ||||||
内容記述タイプ | Other | |||||
内容記述 | Embargo Period 6 months | |||||
著者版フラグ | ||||||