Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers

<table>
<thead>
<tr>
<th>著者</th>
<th>Kyo Satoru, Takakura Masahiro, Fujiwara Toshiyoshi, Inoue Masaki</th>
</tr>
</thead>
<tbody>
<tr>
<td>巻</td>
<td>99</td>
</tr>
<tr>
<td>号</td>
<td>8</td>
</tr>
<tr>
<td>頁</td>
<td>1528-1538</td>
</tr>
<tr>
<td>年</td>
<td>2008</td>
</tr>
</tbody>
</table>
| URL | http://hdl.handle.net/2297/45975

Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers

Satoru Kyo, Masahiro Takakura, Toshiyoshi Fujiwara and Masaki Inoue

Telomerase activation is a critical step for human carcinogenesis through the maintenance of telomeres, but the activation mechanism during carcinogenesis remains unclear. Transcriptional regulation of the human telomerase reverse transcriptase (hTERT) gene is the major mechanism for cancer-specific activation of telomerase, and a number of factors have been identified to directly or indirectly regulate the hTERT promoter, including cellular transcriptional activators (c-Myc, Sp1, HIF-1, AP2, ER, Ets, etc.) as well as the repressors, most of which comprise tumor suppressor gene products, such as p53, WT1, and Menin. Nevertheless, none of them can clearly account for the cancer specificity of hTERT expression. The chromatin structure via the DNA methylation or modulation of nucleosome histones has recently been suggested to be important for regulation of the hTERT promoter. DNA unmethylation or histone methylation around the transcription start site of the hTERT promoter triggers the recruitment of histone acetyltransferase (HAT) activity, allowing hTERT transcription. These facts prompted us to apply these regulatory mechanisms to cancer diagnostics and therapeutics. Telomerase-specific replicative adenovirus (Telomelysin, OBP-401), in which E1A and E1B genes are driven by the hTERT promoter, has been developed as an oncolytic virus that replicates specifically in cancer cells and causes cell death via viral toxicity. Direct administration of Telomelysin was proved to effectively eradicate solid tumors in vivo, without apparent adverse effects. Clinical trials using Telomelysin for cancer patients with progressive stages are currently ongoing. Furthermore, we incorporated green fluorescent protein gene (GFP) into Telomelysin (TelomeScan, OBP-401). Administration of TelomeScan into the primary tumor enabled the visualization of cancer cells under the cooled charged-coupled device (CCD) camera, not only in primary tumors but also the metastatic foci. This technology can be applied to intraoperative imaging of metastatic lymphnodes. Thus, we found novel tools for cancer diagnostics and therapeutics by utilizing the hTERT promoter.

(Cancer Sci 2008; 99: 1528–1538)

In the past decade, research in the field of telomerases has progressed tremendously, especially in relation to cellular immortality and carcinogenesis. Telomerase activation is observed in approximately 90% of human cancers, irrespective of tumor type, while most normal tissues contain inactivated telomerase. The role and timing of telomerase activation in carcinogenesis has been revealed by telomerase-knockout mouse studies. Significant telomere erosions and age- and generation-dependent increases in cytogenic abnormalities are exhibited in telomerase-knockout mice, providing evidence that telomere dysfunction with critically short telomeres causes genomic instability.2 This concept is further supported by studies using telomerase−/− p53−/− double-knockout mice. These mouse cells demonstrate high levels of genomic instability, exemplified by increases in both formation of dicentric chromosomes and susceptibility to oncogenic transformation. These mice exhibit significantly decreased tumor latency and overall survival. Thus, in the absence of genome checkpoint functions, telomere dysfunction accelerates genomic instability, facilitating cancer initiation. According to this concept, the genomic instability caused by telomere dysfunction occurs in the early stages of carcinogenesis, before telomerase activation. Subsequently, telomeres in these initiated cells undergo further progressive shortening, generating rampant chromosomal instability and threatening cell survival. Telomerase activation necessarily occurs at this stage to stabilize the genome and confer unlimited proliferative capacity upon the emerging and evolving cancer cell. In other words, cells that have acquired telomerase activity can obtain the capacity for cancer progression. Eventually, most cancer cells exhibit telomerase activity.

This cancer-specific telomerase activity provides an opportunity for us to utilize it for cancer diagnosis and treatment. Continuous effort has been made to uncover the molecular mechanisms of telomerase activation during carcinogenesis. The discovery of the telomerase subunit human telomerase reverse transcriptase (hTERT) is the starting point for uncovering the cancer-specific activation of telomerase. Numerous studies have demonstrated that hTERT expression is highly specific to cancer cells and tightly associated with telomerase activity, while the other subunits are constitutively expressed both in normal and cancer cells, Therefore, there is no doubt that hTERT expression plays a key role in cancer-specific telomerase activation. In this review article, we discuss the cancer-specific regulation of hTERT and its application for cancer diagnosis and treatment.

Cloning of the hTERT promoter and identification of the core promoter region containing cis- and trans-elements for cancer-specific transcription

In 1999 we and other groups successfully cloned the S′-promoter region of the hTERT gene. Transient expression assays using the 3.0 kb of the flanking sequences of the hTERT gene revealed that the transcriptional activity was up-regulated...
specifically in cancer cells, while it was silent in most normal cells.\(^{(13)}\) Deletion analysis of the promoter identified the proximal 260 bp region functioning as the core promoter essential for cancer-specific transcriptional activation. Within the core promoter, several distinct transcription-binding sites are present; E-boxes (CACGTG) located at –165 and +44 (numbering based on the transcription start site determined by CapSite Hunting method\(^{(11)}\)) are potential binding sites of basic helix-loop-helix zipper (bHLHZ) transcription factors encoded by the Myc family oncogenes. The existence of E-boxes on the \(hTERT\) promoter stirred telomerase researchers since c-Myc has been known to activate telomerase.\(^{(16)}\) In fact, several groups confirmed that c-Myc binds to E-boxes on the \(hTERT\) promoter and activates the transcription\(^{(15–19)}\) which established the scenario that c-Myc is a key regulator of \(hTERT\) transcription during carcinogenesis. However, several studies found that Myc and \(hTERT\) expression levels are not necessarily tightly correlated in some cancer cells.\(^{(20,21)}\) Furthermore, it should be noted that most of these studies used overexpressed c-Myc for the luciferase reporter assay as well as recombinant c-Myc for the electrophoretic mobility shift assay (EMSA) to demonstrate binding to the E-boxes. Therefore, it remains unclear whether endogenous binding of c-Myc on the \(hTERT\) promoter plays a critical role in \(hTERT\) transcription in vivo, especially during carcinogenesis. Xu \textit{et al.} reported the important finding that endogenous c-Myc binding to the E-boxes on the \(hTERT\) promoter was well correlated with the induction of \(hTERT\) in proliferating leukemic cells.\(^{(22)}\) Nevertheless, it remains unclear whether up-regulation of \textit{in vivo} binding of c-Myc to the \(hTERT\) promoter occurs during carcinogenesis and how critical it is for continuous \(hTERT\) expression in cancer.

Other characteristic sequences that exist on the \(hTERT\) promoter are the GC-boxes (GGGCGG), which are binding sites for zinc finger transcription factor Sp1. There are at least five GC-boxes within the core promoter of \(hTERT\), proven by EMSA to bind Sp1.\(^{(22)}\) Introduction of mutations in these GC-boxes significantly decreased the transcriptional activity of the promoter, while overexpression of Sp1 in cells that contain relatively low levels of endogenous Sp1 enhanced the promoter activity.\(^{(17)}\) In particular, the \(hTERT\) core promoter activity was almost completely diminished by introducing mutations in all five GC-boxes, while mutation in one site moderately decreased it. Therefore, the GC-boxes function synergistically to maintain the promoter activity of \(hTERT\). However, Sp1 is ubiquitously expressed in a wide range of normal cells, and is not therefore a strong candidate to cause cancer-specific \(hTERT\) expression.

Overall, while the \(hTERT\) core promoter is highly specific to cancer cells, the key transcription factors identified are far from accounting for cancer-specific \(hTERT\) expression.

Critical factors that regulate \(hTERT\) transcription

A number of factors that regulate \(hTERT\) transcription have been identified to regulate the \(hTERT\) promoter. The representative regulators of \(hTERT\) promoter with regard to the clinical aspects are shown in Fig. 1.

Cellular transcription factors. Several transcription factors, as well as c-Myc and Sp1, have been identified to regulate the \(hTERT\) promoter. Activating Enhancer-binding Protein-2 (AP-2) was recently identified as a transcriptional activator of the \(hTERT\) promoter\(^{(23)}\) and, of particular interest, it exhibited tumor-specific
binding to the core promoter region. Although this study examined only one tumor type (lung cancer), this may partly explain tumor-specific hTERT transcription.

Hypoxia-inducible factor-1 (HIF-1), a key regulator of O2 homeostasis, regulates the expression of several genes linked to angiogenesis and energy metabolism. The presence of putative HIF-1 binding sites on the hTERT promoter prompted us to examine the involvement of HIF-1 in regulation of hTERT in tumor hypoxia: we found that hypoxia activated hTERT mRNA in cancer cells in vivo.\(^{(25)}\) Luciferase reporter assays revealed that hTERT transcription was significantly activated in hypoxia and by HIF-1α overexpression, and that the two putative HIF-1 binding sites within the core promoter are responsible for this activation. The chromatin immunoprecipitation assay identified specific binding of HIF-1α to these sites, which was enhanced in hypoxia. siRNA inhibition of HIF1-α abrogated hypoxia-induced hTERT mRNA expression. Thus, hypoxia activates telomerase mainly via transcriptional activation of hTERT, and HIF-1 plays a critical role as a transcription factor. In contrast to these findings, Koshiji et al. observed that HIF-1 inhibited hTERT expression in colon cancer cells.\(^{(26)}\) In this study, they demonstrated that HIF-1 induces cell-cycle arrest even in the absence of hypoxia by functionally counteracting Myc. Eventually, HIF-1 down-regulates Myc-activated genes including hTERT. The reasons for this discrepancy remain unclear, but experimental conditions, such as the concentration of oxygen and constitutive levels of HIF-1 in cell types used, may significantly affect the results. A recent study underscored the importance of HIF-2 in regulating hTERT promoter.\(^{(27)}\) While HIF2-α enhances hTERT expression in renal-cell carcinoma, it represses hTERT transcription in glioma cells, adding a further layer of complexity to the relationship between hypoxia and telomerase activity.

We also found the transcription activator protein AP-1 to function as a transcriptional repressor.\(^{(28)}\) There are two AP-1 sites (at -1655 and -718) within the 2.0 kb promoter of hTERT. EMSA revealed that JunD is the major factor binding to them, which was further supported by chromatin immunoprecipitation (ChIP) assay in vivo. Overexpression of Jun family members with c-fos significantly reduced the promoter activity while mutation of AP-1 sites increased it. Of particular interest is the observation that AP-1 had no effect on the mouse TERT (mTERT) promoter although it has similar binding sites for AP-1. Since mTERT is constitutively expressed both in tumor and normal cells, this species-specific function of AP-1 in TERT expression may in part help explain the difference in telomerase activity between normal human and mouse cells.

Hormones. Hormonal regulation of hTERT and the molecular mechanisms involved have been analyzed most extensively in relation to estrogen. We and other groups found that estrogen activates hTERT transcription via binding of ligand-activated estrogen receptor-α (ERα) to the estrogen-responsive element (ERE) in the hTERT promoter.\(^{(29,30)}\) ER-Sp1 half-sites located downstream of the ERE similarly function as cis-acting elements in response to estrogen stimulation. Estrogen also activates hTERT expression via post-transcriptional mechanisms with the stimulation of nuclear accumulation of hTERT via its phosphorylation, which is mediated by Akt signaling.\(^{(31)}\) Tamoxifen, a selective estrogen receptor modulator, also regulates hTERT expression in a cell-type-specific manner;\(^{(32)}\) tamoxifen inhibits the growth of breast cancer cells, as well as hTERT mRNA expression in the presence of estrogen (E2), antagonizing the E2 effects, in which the ERE on the promoter is involved. In contrast, tamoxifen stimulated the growth of endometrial cancer cells and activated hTERT mRNA expression in the absence or presence of E2, exhibiting estrogen-agonistic action, in which MAP kinase signaling pathways are involved. Androgen was also shown to activate hTERT mRNA in androgen-sensitive prostate cancer cells but this regulation was not due to hTERT promoter activation.\(^{(33)}\)

Progesterone exerts diverse effects on hTERT mRNA expression in a time-dependent manner in progesterone-receptor-positive breast cancer cells.\(^{(34)}\) In the short term, it activates hTERT transcription, but prolonged exposure to progesterone antagonizes estrogen and inhibits hTERT transcription. Interestingly, both short- and long-term regulation is mediated via the MAP kinase signaling pathway.

Cytokines. Telomerase activation is known to be tightly associated with cell proliferation, which suggests that growth signaling might directly regulate hTERT expression.\(^{(35)}\) We established an in vitro model in which telomerase activity can easily be induced upon stimulation of EGF in EGF-receptor-positive cancer cells.\(^{(36)}\) Luciferase reporter assays revealed that EGF activates the hTERT promoter: an Ets motif located in the core promoter of hTERT is responsible. Notably, MAP kinase signaling pathways mediate this regulation. A number of growth signals have been known to be mediated through MAP kinase pathway, with Ets factors playing critical roles as final mediators regulating the target-gene expression. Therefore, EGF-mediated Ets-based hTERT transcription may be one representative pathway through which various growth signals are transduced to the hTERT promoter. This scenario can partly account for telomerase activation associated with cell proliferation.

TGF-β is a representative cytokine that represses hTERT transcription.\(^{(39)}\) The mechanisms through which TGF-β down-regulates hTERT transcription are controversial: while some studies demonstrated that TGF-β repressed hTERT transcription via indirect down-regulation of c-Myc expression,\(^{(40,41)}\) others reported direct interaction of Smad3 and c-Myc disturbing c-Myc activity.\(^{(42)}\) Another study identified several negative regulatory factors for hTERT by means of gene screening using enhanced retroviral mutagenesis (ERM) and found that Smad interacting protein-1 (SIP1) is a repressor for hTERT, possibly mediating TGF-β signals.\(^{(43)}\) A more recent study using siRNA inhibition of the Smad family confirmed that TGF-β-mediated repression of hTERT transcription is largely mediated through Smad3, not Smad1 or Smad2.\(^{(44)}\) However, this study found no role for E-boxes in this repression, but found four E2F-binding sites within the proximal promoter of hTERT to be responsible, based on the data that mutation of these four sites reversed TGF-β-mediated repression of hTERT transcription. The transcriptional activity of E2F family members is regulated by interactions with pocket proteins (Rb, p107, p130) that recruit histone deacetylase (HDAC) proteins to repress target genes. Interestingly, overexpression of the dominant negative E2F gene lacking the ability to bind pocket protein (Rb, p107, p130) and to recruit HDAC significantly abrogated TGF-β-mediated repression of hTERT transcription. Furthermore, trichostatin A (TSA), a HDAC inhibitor, completely reversed the inhibitory effect of TGF-β. These findings highlight E2F and HDAC as central mediators of TGF-β-mediated repression of hTERT transcription. The involvement of HDAC in hTERT transcription is also discussed below.

Oncogenes. High-risk human papillomaviruses (HPV) are representative oncoviruses whose E7 protein can bind to Rb and alleviate repression of E2F-dependent target genes, thereby allowing rapid progression into S phase\(^{(45)}\) while E6 protein facilitates the degradation of p53 through the actions of E6-associated protein (E6-AP), which results in the abrogation of the G1/S and G2/M checkpoints.\(^{(46–48)}\) The initial study found that telomerase is activated in keratinocytes stably expressing HPV16 E6.\(^{(49)}\) Since E6 had been known to activate c-Myc expression\(^{(50)}\) it seemed likely that E6 activates hTERT transcription via up-regulating c-Myc. However, subsequent studies confirmed that high-risk HPV E6 activates hTERT transcription but is not associated with up-regulation of c-Myc.\(^{(51–53)}\) Several studies found that hTERT transcriptional activity by HPV16 E6 correlates with its ability to bind E6-AP.\(^{(54)}\) A correlation between E6-AP binding and hTERT induction prompted the search for possible targets of
the E6/E6-AP complex by a yeast two-hybrid screen, which identified a transcriptional repressor known as NFX1 that binds to 48-bp sequences surrounding the proximal E-box on the hTERT promoter.\(^{54}\) It is supposed that the E6/E6-AP complex induces hTERT expression by destabilizing NFX-1. In support of this, decreased expression of NFX1 using siRNAs was sufficient to induce hTERT expression and telomerase activity in primary human epithelial cells.

Some human oncoproteins specifically activate hTERT promoter. In hTERT-negative normal cells, HER2/Neu signals (by overexpressing oncogenic HER2/Neu mutant) alone failed to activate the endogenous hTERT expression.\(^{55}\) However, coexpression of HER2/Neu with one ETS family member (ER81) successfully activated hTERT expression in these cells. There are five putative binding core GGAA/T sites for ETS family in exon1 to intron1 of the hTERT gene, and ER81 specifically binds to two of them and activates hTERT promoter in cooperation with HER2/Neu signals. Notably, this activation was mediated via the ERK-MAP kinase pathway, in which upstream Ras and Raf-1 play critical roles. Thus, three prominent oncoproteins, HER2/Neu, Ras, and Raf, facilitate hTERT expression via an Ets family member in hTERT-negative normal cells.

Epigenetic regulation of hTERT transcription

The hTERT promoter contains a cluster of CpG sites, and many researchers therefore supposed its regulation to involve DNA methylation. Several groups examined the methylation status of these CpG sites on this promoter. It was initially expected that methylation of the hTERT promoter was associated with gene silencing; indeed, some groups showed such association.\(^{56–58}\) However, other reports indicated no significant correlation between hTERT expression and methylation status either overall or at a specific site.\(^{59,60}\) Furthermore, contradictory results have been reported: increased DNA methylation in the hTERT promoter was observed in hTERT-positive cancer cells while lack of methylation was found in normal hTERT-negative cells.\(^{61}\) These unusual correlations between DNA methylation and hTERT expression in normal and cancer cells generated confusion among telomerase researchers. Recently, Zinn et al. aimed to clarify the discrepancies:\(^{62}\) using bisulfitesequencing, they first identified that all telomerase-positive cancer cell lines examined retained alleles with little or no methylation around the transcription start site despite being densely methylated in more upstream regions. ChIP assay revealed that both active (acetyl-H3K9 and dimethyl-H3K4) and inactive (trimethyl-H3K9 and trimethyl-H3K27) chromatin marks are present across the hTERT promoter. Subsequent Chip-MSP (methylation-specific polymerase chain reaction [PCR]) assay identified that active chromatin mark DNA around the transcription start site was tightly associated with unmethylated DNA. These data suggest that the absence of methylation and the association with active chromatin marks around the transcription start site allow for the expression of hTERT (Fig. 1), indicating that the DNA methylation pattern of the hTERT promoter is consistent with the usual dynamics of gene expression.

Modification of nucleosome histones, including acetylation/deacetylation as well as methylation, is known to regulate chromatin structure and thereby affect gene transcription.\(^{63}\) Roles for histone-modification-mediated chromatin remodeling in the regulation of hTERT transcription have been revealed (Fig. 1). We and other groups found that treatment with TSA induced significant elevation of hTERT mRNA expression and telomerase activity in normal cells, but not in cancer cells.\(^{64,65}\) Transient expression assays revealed that TSA activates the hTERT promoter, for which the proximal core promoter was responsible. Overexpression of Sp1 enhanced responsiveness to TSA, and mutation of Sp1 sites but not c-Myc sites of the core promoter of hTERT abrogated this activation. Introduction of the dominant-negative form of the Sp family inhibited TSA activation. These results indicate that HDAC activates the hTERT promoter in normal cells in an Sp1-dependent manner (Fig. 1). It is possible that endogeneous Sp1 interacts with HDAC and recruits it to the hTERT promoter\(^{66}\) resulting in the deacetylation of nucleosome histones, leading to the repression of transcription. While Sp1 contributes to the transactivation of hTERT as a potent transcriptional activator\(^{21,22}\) it might be involved in gene silencing of hTERT in normal cells, possibly by recruiting HDACs. Compelling evidence suggests that Sp1 interacts with a p300 coactivator possessing intrinsic histone acetyl transferase (HAT) activity.\(^{67}\) Therefore, it is possible that Sp1 interacts with various factors that have HAT or HDAC activity, and that this switching explains the different actions of Sp1 on the hTERT promoter in normal and cancerous cells. The E-box binding activator c-Myc and repressor Mad1\(^{21,22,68}\) which compete with each other for the common binding partner Max are also involved in histone-modification-mediated chromatin remodeling of the hTERT promoter. The endogenous c-Myc/Max complex to the hTERT promoter in proliferating leukemia cells was found to be associated with the acetylated histones, resulting in enhanced hTERT expression.\(^{22}\) In contrast, the complex was replaced by the endogenous Mad1/Max complex that was associated with deacetylated histones and decreased hTERT expression in differentiated status.

Recently, a role for histone methylation in hTERT regulation has also been demonstrated. Atkinson et al. observed that highly trimethylated H3-K4 was associated with the actually transcribed hTERT gene in telomerase-proficient tumor cells.\(^{69}\) More recently, we reported the interesting finding that SF-1- and SYND3-domain-containing protein-3 (SMYD3), a histone H3-K4-specific dimethyltransferase and trimethyltransferase, respectively, play critical roles in H3-K4 methylation of the hTERT promoter.\(^{70}\) Of the various SET-domain-containing proteins, SMYD3 is unique because not only does it have methyltransferase activity but it also binds to a specific DNA sequence (CCCTCCCC) in its target promoters, as do transcription factors. In fact, SMYD3 was confirmed to bind some of the CCCTCCCG motifs within the core promoter of hTERT and activate hTERT transcription. Overexpression of SYND3 induced hTERT mRNA expression in hTERT-negative normal and cancer cells. Disruption of SMYD3 binding motifs in the hTERT promoter led to significant reduction of transcription. Expectedly, siRNA-knockdown of SYND3 resulted in abolishment of H3-K4 trimethylation of the hTERT promoter in cancer cells; interestingly, this knockdown also led to defects in binding c-Myc and Sp1. Furthermore, histone H3 acetylation within the core promoter of hTERT was diminished by the SYND3-knockdown. These data suggest a model in which SMYD3 binding to the hTERT promoter leads to increased H3 trimethylation, a critical event that recruits HAT and promotes Sp1 and c-Myc access to the hTERT promoter (Fig. 1). Thus, SMYD3-mediated trimethylation of H3-K4 may function as a licensing element for subsequent transcription-factor binding to the hTERT promoter, which may trigger further recruitment of HAT activity.

Identification of hTERT repressors

Recently, Lin et al.\(^{43}\) identified several negative regulatory factors for hTERT by means of gene screening that used enhanced retroviral mutagenesis (ERM). They identified menin, SIP1, Mad1, hSIR2, and BRIT1 as candidates for the hTERT repressor, generating the idea that multiple tumor suppressors might involve telomerase repression, especially in normal cells. p53 was also shown to repress hTERT transcription in a Sp1-dependent manner.\(^{71,72}\) It was proved that p53 can form a complex with Sp1, which disturbs the transcriptional activity of Sp1 and leads to transcriptional repression.\(^{72}\) Several transcriptional repressors,

Kyo et al.

Cancer Sci | August 2008 | vol. 99 | no. 8 | 1531
© 2008 Japanese Cancer Association
including Wilms’ tumor 1 tumor suppressor (WT1) and myeloid-specific zinc finger protein-2 (MZF-2) are also known to repress hTERT transcription via binding to their specific sites on the promoter, although the mechanisms of repression remain unclear.\(^\text{73,74}\) We also found that on combinatorial treatment with Vitamin D3 and 9-cis-retinoic acid, the heterodimer complex, vitamin D\(^\text{3}\) receptor/retinoid X receptor (RXR), binds to the distal sites on the hTERT promoter and represses transcription.\(^\text{75}\)

There has been an extensive search for telomerase repressors, one of which was based on microcell-mediated chromosome transfer.\(^\text{76}\) Several normal human chromosomes, including chromosomes 3, 4, 6, 7, 10, and 17, have been shown to repress telomerase activity in some but not all cancer cells.\(^\text{77,85}\) Horikawa et al. established a nice system to investigate an endogenous mechanism for telomerase repression using a telomerase-positive renal carcinoma cell line (RCC23) and telomerase-negative counterpart (RCC23 + 3) generated by transferring a normal chromosome 3 into RCC23 cells.\(^\text{86}\) By comparing the molecular characteristics of these cells, they identified the E-box downstream of the transcription initiation site that was responsible for telomerase repressive mechanisms restored by normal chromosome 3 targets. They also found that the factors binding to the E-box, other than c-Myc/Mad or USF families, were involved in the transcriptional repression of hTERT although they remained to be cloned. This E-box-mediated repression functions in various types of normal human cells, while it is inactive in some, but not all, hTERT-positive cancer cells, providing evidence for an endogenous mechanism for hTERT transcriptional repression that becomes inactivated during carcinogenesis.

hTERT promoter for cancer therapeutics

hTERT promoter for cancer-specific transgene expression. In the field of cancer gene therapy, the researchers have a great interest in efficiently expressing target genes in the tumor tissue while decreasing adverse effects in normal tissue. Control of gene expression via tissue- or cell-specific promoters has been tested extensively as a means of targeting transgene expression. Several promoters have been identified that are more active in particular tumor types than in the tissues from which they arise, and these promoters have been exploited to target transgene expression in tumors. These promoters include the tyrosinase gene promoter in melanomas,\(^\text{87}\) the carcinoembryonic antigen promoter in colorectal and lung cancer,\(^\text{88}\) the MUC1 promoter in breast cancer,\(^\text{89}\) and the E2F promoter in cancers that carry a defective retinoblastoma gene.\(^\text{90}\) However, while reports on these promoters suggest that achieving relatively tumor-specific transgene expression is possible, several limitations have also been revealed. First, most of these promoters are limited to specific tumor histologies and cannot be used universally in tumors of various origins. Second, most of these promoters are much weaker than commonly used viral promoters such as the CMV early promoter, the Rous sarcoma virus long-terminal repeat (RSV-LTR), and the SV40 early promoter. Consequently, their use is hampered by the problem of low expression.

The hTERT promoter is ideal to overcome the shortcoming of these promoters. Gu et al. first established the binary adenoviral system, which uses two adenoviral vectors to induce Bax gene expression.\(^\text{91}\) One of these vectors contains a human Bax cDNA under the control of a minimal synthetic promoter comprising five Gal-4-binding sites and a TATA box, which is silent in 293 packaging cells, thus avoiding the toxic effects of the Bax gene on the 293 cells and allowing vector (Ad/GT-Bax) production. Expression of the Bax gene can be induced by coinfecting the Ad/GT-Bax virus with the second adenoviral vector in the binary system (Ad/PK-GV16), which consists of a fusion protein comprising a Gal-4 DNA-binding domain and a VP 16 activation domain under the control of a constitutively active PGK promoter.

Ad/PK-GV16 is expected to produce VP16 with Gal-4 DNA binding domain preferentially in tumor cells and thereby induce Bax gene expression via interaction with Gal-4-binding sites. This binary infection system was reported to suppress tumor growth *in vitro* and *in vivo*. More simple vector systems to achieve cancer-specific transgene expression have been tried, in which several apoptosis-inducible genes such as *FADD*,\(^\text{92,93}\) *caspase*\(^\text{94,95}\) or suicide gene (human herpes simplex virus thymidine kinase (*HSVtk*) gene),\(^\text{96}\) tumor-necrosis-factor-related apoptosis-inducing ligand gene (*TRAIL*),\(^\text{97}\) or chemotaxtractant protein gene (*MCP-1*)\(^\text{98}\) have been driven by the hTERT promoter in various tumor types. Most of these studies successfully demonstrated tumor-specific transgene expression *in vivo*, achieving long-term survival benefit and minimizing its expression in normal tissues following direct injection of the vectors and even with systemic injection. Systemic toxicity is one concern in this treatment modality because telomerase activity has been reported to exist in some normal cells, such as hematopoietic crypt and endometrial cells, most of which have high regenerative potentials. Gu et al. tested hTERT-promoter-driven transgene expression in human CD34(+) bone marrow progenitor cells and found very low hTERT promoter activity in these cells as well as no detectable change in blood-cell profiles under long-term observation.\(^\text{99}\) Basically, the hTERT promoter activity in these normal cells with telomerase activity is much lower than that in cancer cells, and toxicity is expected to be minimized.

hTERT promoter for cancer-specific replication-competent adenovirus. Despite these efforts, levels of transgene expression were insufficient to eradicate tumors, especially when vectors were systemically administrated. This is mainly due to the characteristics of adenoviral vectors used, in which the E1 gene was deleted to inhibit replicative capacity. These nonreplicative vectors had limited distribution within the tumor mass even after direct intratumoral administration. To confer specificity of infection and increase viral spread to neighboring tumor cells, the use of replication-competent adenoviruses has become a reality. The use of modified adenoviruses that replicate and complete their lytic cycle preferentially in cancer cells is a promising strategy for the treatment of cancer. Many efforts have been made to realize cancer-specific adenoviral replication using a variety of gene promoters, including the prostate-specific antigen,\(^\text{100}\) MUC1,\(^\text{101}\) osteocalcin,\(^\text{102}\) L-plastin,\(^\text{103}\) midkine,\(^\text{104}\) and E2F-1 genes.\(^\text{105}\) Unfortunately, these promoters have tissue-type specificity and exhibit transcriptional activity only in cells that express such tumor markers. Furthermore, the transcriptional activity is relatively low. We were prompted by these studies to use the hTERT promoter, hypothesizing that an adenovirus containing the hTERT promoter-driven E1 genes could target a variety of tumors and kill them with high replicative capacity.

We developed a novel telomerase-dependent replicative adenovirus type 5 vector (Telomelysin, OBP-301) in which *E1A* and *E1B* genes, required for adenoviral replication, were transcribed under the hTERT promoter.\(^\text{106}\) In most vectors that replicate under the transcriptional control of the E1A gene, E1B is driven by the endogeneous adenovirus E1B promoter. However, the insertion of internal ribosome entry site (IRES) between E1A and E1B improved the promoter specificity of E1B transcription. We selected the 455 bp-proximal promoter region of the hTERT gene to drive E1A and E1B genes because our previous experiments showed that this region exhibits the highest transcriptional activity, comparable to the proximal core promoter.\(^\text{113}\) The construction of Telomelysin is shown in Fig. 2. Similar replicative adenoviruses controlled by the hTERT promoter have also been developed by other groups.\(^\text{107,108}\)

In vitro replication assays revealed that Telomelysin induced selective expression of E1A and E1B in cancer cells, resulting in viral replication at 5–6 orders of magnitude by 3 days after infection, while it was attenuated by up to 2 orders of magnitude.
We confirmed that the transduction efficiency did not greatly differ in cancer and normal cells. Therefore, such difference in replication was considered to be due to the tumor specificity of Telomelysin. Since hTERT expression is observed broadly in a variety of tumor types, Telomelysin was expected to replicate in various cancer cells. Indeed, Telomelysin could efficiently kill head and neck, lung, esophageal, pancreatic, hepatic, prostate, and cervical cancers, as well as melanoma, sarcoma, and mesothelioma cells. We confirmed that the transduction efficiency did not greatly differ in cancer and normal cells. Therefore, such difference in replication was considered to be due to the tumor specificity of Telomelysin. Since hTERT expression is observed broadly in a variety of tumor types, Telomelysin was expected to replicate in various cancer cells. Indeed, Telomelysin could efficiently kill head and neck, lung, esophageal, pancreatic, hepatic, prostate, and cervical cancers, as well as melanoma, sarcoma, and mesothelioma cells.

The in vivo antitumor effect of Telomelysin was further investigated using mouse xenografts. Intratumoral injection of Telomelysin into inoculated tumors effectively retarded tumor growth and extended the survival of mice (Fig. 3). Telomelysin was also effective in progressive tumors with large tumor burden. When Telomelysin was directly injected to xenograft tumors after maximum growth, their size apparently decreased with the formation of massive ulceration at the site of injection.

One technical merit for the use of replicative adenovirus is the unlimited replicative potential of virus over tumor mass. After tumor lysis due to viral toxicity, replicated viral particles can be released from tumors and spread to the whole body via blood or lymphatic flow and finally replicate again at metastatic sites if they are telomerase-positive. Thus, in theory, Telomelysin
might have efficacy against not only primary lesions but also metastatic sites.

Administration of Telomelysin in combination with chemotherapeutic agents. To enhance the therapeutic potential of Telomelysin, efforts have been made to combine it with several chemotherapeutic agents. Combination with docetaxel, vinorelbine (Nevelbine), or SN38 (active metabolite of irinotecan) has been confirmed in vitro to enhance Telomelysin cytotoxicity in different organs including the lung, colon, esophagus, stomach, liver, and prostate. Of particular interest were the synergistic effects of Telomelysin and HDAC inhibitors. Telomelysin administered intratumorally to xenografts in combination with intraperitoneal administration of docetaxel. The mechanism of this synergism remains unclear at present, but residual viable cells that survived after the treatment with docetaxel permit the replication of Telomelysin, leading to effective cell death. Telomerase-dependent virotherapy has also been shown to overcome tumor resistance against chemotherapy in hepatocellular carcinoma.

HDAC inhibitors increase Coxackie's-adenovirus receptor (CAR) gene expression in various cancer cell lines. In addition, they are known to increase viral and transgene expression following adenovirus infection. In fact, FR901228, a potent HDAC inhibitor, activated CAR levels on target tumor cells, increasing the amounts of Telomelysin replication, leading to synergistic antitumor effects. Selection of the partner chemotherapeutic agents appears to be an important factor that affects and determines the efficacy of telomerase-dependent oncolytic virotherapy.

Clinical trial of Telomelysin. A phase I clinical trial of Telomelysin as monotherapy has been performed in the United States. The proposed protocol 'A phase I dose-escalation study of intratumoral injection with telomerase-specific replication-competent oncolytic adenovirus, Telomelysin (OBP-301) for various solid tumors', sponsored by Onclys BioPharma, is an open-label, phase I, three-cohort dose-escalation study. The trial commenced following the approval of the US Food and Drug Administration (FDA) in October 2006. The study is still underway and we plan to assess the safety, tolerability, and feasibility of intratumoral injection of the agent in patients with advanced cancer. We will also analyze the humoral immune response to Telomelysin, and take tissue biopsies to evaluate the pharmacokinetics and pharmacodynamics of Telomelysin in the injected tumor. The therapeutic response will be assessed by measuring changes in tumor dimensions, comparative analysis of tumor biopsies, and cytokine and/or peptide measurements. Patients selected for this trial have histologically or cytologically proven nonresectable solid tumors and have failed to respond to conventional therapies such as primary external beam radiation or systemic chemotherapy. All patients have a disease that is measurable and accessible to direct injection of Telomelysin. The doses of Telomelysin will be escalated from low to high virus particles in 1-log increments. Patients will be treated with a single intratumoral injection of Telomelysin and then monitored for 1 month.

hTERT promoter for cancer diagnostics

A novel approach has been developed to visualize cancer cells using cancer-specific replication-competent adenovirus expressing the green fluorescent protein (GFP). Telomelysin was modified to contain the GFP gene driven by the cytomegalovirus (CMV) promoter in the E3-deleted region of adenoviruses. The resultant adenovirus was termed TelomeScan or OBP-401. TelomeScan replicated 5–6 orders of magnitude by 3 days after infection in human cancer cell lines and coordinately induced GFP expression. In contrast, it replicated only 2 orders of magnitude in normal human fibroblasts without significant GFP expression. When TelomeScan was directly injected to subcutaneous xenografts of human cancer cells, the xenografts exhibited GFP signals over their entire area and were easily visualized, indicating that TelomeScan had replicated and spread throughout the tumors (Fig. 4a).

Adenoviral spread and subsequent replication at distal sites may also be useful to visualize the metastatic foci of cancers. Theoretically, replicated TelomeScan can pass through the lymphatic pathway from the primary tumors to the regional or sentinel lymph nodes and can replicate in metastatic foci. To this end, in vivo experiments were performed using colorectal tumor models which were orthotopically implanted into the rectum in mice. This mouse model shows para-rectal lymph node metastasis after implantation, which was histologically confirmed. Some para-rectal lymph nodes exhibited GFP signals 24 h after intratumoral injection of TelomeScan into the primary site. Lymph nodes with GFP signals were dissected, followed by histological examination, and were found to have metastatic foci of the tumor cells, while those without GFP signals had no metastatic foci (Fig. 4b). The sensitivity and specificity of this imaging technique to detect metastatic foci are 92.3% and 86.6%, respectively.

This in vivo imaging model may be useful during surgical lymphadenectomy. After injecting TelomeScan into the primary tumor, the surgeon can visualize metastatic lymph nodes with GFP fluorescence by illuminating the abdominal cavity with a Xenon lamp. Of course, this diagnostic modality may also be applied as therapeutic modality. We confirmed that TelomeScan has lesser but still sufficient cytotoxic effects compared with Telomelysin (data not shown). Therefore, injected TelomeScan that spreads to the regional lymph nodes or other metastatic foci may have the ability to eradicrate any remaining tumor cells that the surgeon fails to completely remove.

Finally, we are currently using TelomeScan as a tool to visualize cancer cells in cytoskeletal samples. Once exfoliated cells obtained from certain tissues are infected, the TelomeScan can replicate preferentially in hTERT-promoter-positive cancer cells and exhibit GFP signals that can easily be detected by fluorescent microscopy (Fig. 4c) (Maida et al., manuscript in preparation).

Conclusion and perspectives

In the past decade, a number of factors that regulate hTERT transcription have been identified. However, no single factor accounts for the cancer-specific expression of hTERT. It is obvious that multiple factors are involved in its regulation, probably in combination, and chromatin remodeling appears to play a critical role. It is of particular interest that active chromatin marks present around the transcription start site of the hTERT promoter are tightly associated with unmethylated DNA in hTERT-positive cells, suggesting a mechanism that is consistent with the usual dynamics of gene regulation via DNA methylation. DNA methylation and modification of nucleosome histones such as acetylation and methylation are functionally linked and cooperate to regulate chromatin structure and gene expression. Emerging evidence suggests that some of the histone methyltransferases directly target the hTERT promoter. Studies of hTERT promoter regulation will be developed in relation to chromatin remodeling factors.

Clinical application of hTERT promoter as a driving promoter in oncolytic adenovirus has been realized in the past 5 years. Although several oncolytic adenoviruses have been developed, Telomelysin is the first hTERT-dependent oncolytic adenovirus to be used in a clinical trial. Several barriers appear to limit the efficacy of Telomelysin, probably including some tumor types being refractory to infection with Telomelysin due to low CAR expression, as well as the adverse effects on normal hTERT-positive cells. Revised Telomelysin, termed Telomelysin-RGD or OBP-405, has been developed, in which the virus fiber was modified to contain RGD (Arg-Gly-Asp) peptide, which binds with high affinity to integrins on the cell surface, leading to increased infectivity. We should consider the fact that some
normal cells, including some tissue stem cells, express relatively high levels of telomerase, raising questions regarding the safety of Telomelysin. Although we have to wait for the final report of the clinical trial, no significant adverse effects on normal tissues have been reported so far, even in hematopoietic cells, which may be highly susceptible to Telomelysin due to the presence of telomerase-positive stem cells. How can we explain such favorable phenomena? One possible explanation is that the hTERT promoter activity itself appears to be relatively lower in telomerase-positive normal cells than in hTERT-positive cancer cells, which limits its replication in normal cells and may largely contribute to the safety of this virus. Alternatively, Telomelysin may have lower capacity for infecting to hematopoietic stem cells possibly due to low CAR expression.

Key to success of hTERT-dependent oncolytic virotherapy as a novel agent for cancer is a means of combining it with conventional therapies such as chemotherapy, radiotherapy, immunotherapy, surgery, or recently established molecular target therapies. The best combination and the timing of Telomelysin treatment (neoadjuvant, concurrent or adjuvant setting) should be investigated extensively in each tumor type.

Finally, diagnostic utility of hTERT-dependent oncolytic adenovirus for cancer may attract considerable attention in the near future. We began to apply this technology to cytological screening of cervical cancer and it should be extended to other tumor types for which cytological screening is important in early diagnosis. Intraoperative monitoring and detection of TelomeScan signals in the metastatic lymph nodes may provide revolutionary change in diagnostic modality during surgery. This novel technology will affect and contribute to the minimum operation procedure for cancers.

Acknowledgments

This work was supported in part by Grants-in-Aid from the Ministry of Education, Science, and Culture of Japan; and grants from the Ministry of Health, and Welfare of Japan; and Megumi Medical Foundation at Kanazawa University, Japan. We greatly appreciate all members of the molecular pathology group in the Department of Obstetrics and Gynecology, Kanazawa University, for their devoted contribution to work on telomerase in human cancer. We also thank Mr. Yasuo Urita, president of Oncolys BioPharma, Tokyo, Japan, for the collaborative setting of the clinical trial for Telomelysin.
References

