ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. C. 医薬保健学域; 医学類・薬学類・医薬科学類・保健学類
  2. c 10. 学術雑誌掲載論文(医・保健)
  3. 1. 査読済論文(医学・保健)

Diagnostic Performance of Artificial Neural Network for Detecting Ischemia in Myocardial Perfusion Imaging

http://hdl.handle.net/2297/43014
http://hdl.handle.net/2297/43014
ca48b6eb-d3d0-49f8-8050-c5ae78d25853
名前 / ファイル ライセンス アクション
ME-PR-NAKAJIMA-K-1546.pdf ME-PR-NAKAJIMA-K-1546.pdf (1.2 MB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2017-10-03
タイトル
タイトル Diagnostic Performance of Artificial Neural Network for Detecting Ischemia in Myocardial Perfusion Imaging
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Nakajima, Kenichi

× Nakajima, Kenichi

WEKO 320
e-Rad 00167545
金沢大学研究者情報 00167545
研究者番号 00167545

Nakajima, Kenichi

Search repository
Matsuo, Shinro

× Matsuo, Shinro

WEKO 599
金沢大学研究者情報 30359773
研究者番号 30359773

Matsuo, Shinro

Search repository
Wakabayashi, Hiroshi

× Wakabayashi, Hiroshi

WEKO 489
金沢大学研究者情報 60622818
研究者番号 60622818

Wakabayashi, Hiroshi

Search repository
Yokoyama, Kunihiko

× Yokoyama, Kunihiko

WEKO 20697
研究者番号 60230661

Yokoyama, Kunihiko

Search repository
Bunko, Hisashi

× Bunko, Hisashi

WEKO 24140

Bunko, Hisashi

Search repository
Okuda, Koichi

× Okuda, Koichi

WEKO 24141

Okuda, Koichi

Search repository
Kinuya, Seigo

× Kinuya, Seigo

WEKO 115
e-Rad 20281024
金沢大学研究者情報 20281024
研究者番号 20281024

Kinuya, Seigo

Search repository
Nyström, Karin

× Nyström, Karin

WEKO 24142

Nyström, Karin

Search repository
Edenbrandt, Lars

× Edenbrandt, Lars

WEKO 24143

Edenbrandt, Lars

Search repository
書誌情報 Circulation Journal

巻 79, 号 7, p. 1549-1556, 発行日 2015-01-01
ISSN
収録物識別子タイプ ISSN
収録物識別子 1346-9843
NCID
収録物識別子タイプ NCID
収録物識別子 AA11591968
DOI
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 10.1253/circj.CJ-15-0079
出版者
出版者 THE JAPANESE CIRCULATION SOCIETY 日本循環器学会
抄録
内容記述タイプ Abstract
内容記述 Background:The purpose of this study was to apply an artificial neural network (ANN) in patients with coronary artery disease (CAD) and to characterize its diagnostic ability compared with conventional visual and quantitative methods in myocardial perfusion imaging (MPI).Methods and Results:A total of 106 patients with CAD were studied with MPI, including multiple vessel disease (49%), history of myocardial infarction (27%) and coronary intervention (30%). The ANN detected abnormal areas with a probability of stress defect and ischemia. The consensus diagnosis based on expert interpretation and coronary stenosis was used as the gold standard. The left ventricular ANN value was higher in the stress-defect group than in the no-defect group (0.92±0.11 vs. 0.25±0.32, P<0.0001) and higher in the ischemia group than in the no-ischemia group (0.70±0.40 vs. 0.004±0.032, P<0.0001). Receiver-operating characteristics curve analysis showed comparable diagnostic accuracy between ANN and the scoring methods (0.971 vs. 0.980 for stress defect, and 0.882 vs. 0.937 for ischemia, both P=NS). The relationship between the ANN and defect scores was non-linear, with the ANN rapidly increased in ranges of summed stress score of 2–7 and summed defect score of 2–4.Conclusions:Although the diagnostic ability of ANN was similar to that of conventional scoring methods, the ANN could provide a different viewpoint for judging abnormality, and thus is a promising method for evaluating abnormality in MPI. (Circ J 2015; 79: 1549–1556)
権利
権利情報 Copyright © 2015 THE JAPANESE CIRCULATION SOCIETY 日本循環器学会
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
関連URI
識別子タイプ URI
関連識別子 https://www.jstage.jst.go.jp/browse/circj
関連URI
識別子タイプ URI
関連識別子 http://www.j-circ.or.jp/
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-27 16:58:13.257663
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3