ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. H-5. 高度モビリティ研究所
  2. h-5 10. 学術雑誌掲載論文
  3. 1. 査読済論文

Robust Intensity-Based Localization Method for Autonomous Driving on Snow-Wet Road Surface

https://doi.org/10.24517/00049793
https://doi.org/10.24517/00049793
ddabffa1-5d0d-4018-8def-e5854ca77027
名前 / ファイル ライセンス アクション
FR-PR-ALDIBAJA-M-2369.pdf FR-PR-ALDIBAJA-M-2369.pdf (1.9 MB)
license.icon
Item type 学術雑誌論文 / Journal Article(1)
公開日 2018-01-15
タイトル
タイトル Robust Intensity-Based Localization Method for Autonomous Driving on Snow-Wet Road Surface
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
ID登録
ID登録 10.24517/00049793
ID登録タイプ JaLC
著者 Aldibaja, Mohammad

× Aldibaja, Mohammad

WEKO 72818
e-Rad 10868219

Aldibaja, Mohammad

Search repository
Suganuma, Naoki

× Suganuma, Naoki

WEKO 70647
e-Rad 50361978

Suganuma, Naoki

Search repository
Yoneda, Keisuke

× Yoneda, Keisuke

WEKO 70648
e-Rad 80643957

Yoneda, Keisuke

Search repository
著者別表示 菅沼, 直樹

× 菅沼, 直樹

菅沼, 直樹

Search repository
米陀, 佳祐

× 米陀, 佳祐

米陀, 佳祐

Search repository
提供者所属
内容記述タイプ Other
内容記述 金沢大学高度モビリティ研究所
書誌情報 IEEE Transactions on Industrial Informatics

巻 13, 号 5, p. 2369-2378, 発行日 2017-10
ISSN
収録物識別子タイプ ISSN
収録物識別子 1551-3203
NCID
収録物識別子タイプ NCID
収録物識別子 AA12023428
DOI
関連タイプ isVersionOf
識別子タイプ DOI
関連識別子 10.1109/TII.2017.2713836
出版者
出版者 IEEE Computer Society
抄録
内容記述タイプ Abstract
内容記述 Autonomous vehicles are being developed rapidly in recent years. In advance implementation stages, many particular problems must be solved to bring this technology into the market place. This paper focuses on the problem of driving in snow and wet road surface environments. First, the quality of laser imaging detection and ranging (LIDAR) reflectivity decreases on wet road surfaces. Therefore, an accumulation strategy is designed to increase the density of online LIDAR images. In order to enhance the texture of the accumulated images, principal component analysis is used to understand the geometrical structures and texture patterns in the map images. The LIDAR images are then reconstructed using the leading principal components with respect to the variance distribution accounted by each eigenvector. Second, the appearance of snow lines deforms the expected road context in LIDAR images. Accordingly, the edge profiles of the LIDAR and map images are extracted to encode the lane lines and roadside edges. Edge matching between the two profiles is then calculated to improve localization in the lateral direction. The proposed method has been tested and evaluated using real data that are collected during the winter of 2016-2017 in Suzu and Kanazawa, Japan. The experimental results show that the proposed method increases the robustness of autonomous driving on wet road surfaces, provides a stable performance in laterally localizing the vehicle in the presence of snow lines, and significantly reduces the overall localization error at a speed of 60 km/h. © 2005-2012 IEEE.
著者版フラグ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-27 10:34:57.836574
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3