ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. B. 理工学域; 数物科学類・物質化学類・機械工学類・フロンティア工学類・電子情報通信学類・地球社会基盤学類・生命理工学類
  2. b 10. 学術雑誌掲載論文
  3. 1.査読済論文(工)

Training data selection method for generalization by multilayer neural networks

http://hdl.handle.net/2297/5654
http://hdl.handle.net/2297/5654
8882ea61-93b9-402c-99fc-ad61a44e06c7
名前 / ファイル ライセンス アクション
TE-PR-NAKAYAMA-K-374.pdf TE-PR-NAKAYAMA-K-374.pdf (657.2 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2017-10-03
タイトル
タイトル Training data selection method for generalization by multilayer neural networks
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Hara, Kazuyuki

× Hara, Kazuyuki

WEKO 9719

Hara, Kazuyuki

Search repository
Nakayama, Kenji

× Nakayama, Kenji

WEKO 353
e-Rad 00207945
研究者番号 00207945

Nakayama, Kenji

Search repository
提供者所属
内容記述タイプ Other
内容記述 金沢大学大学院自然科学研究科知能情報・数理
書誌情報 IEICE Trans. Fundamentals

巻 E81-A, 号 3, p. 374-381, 発行日 1998-03-01
ISSN
収録物識別子タイプ ISSN
収録物識別子 0916-8508
NCID
収録物識別子タイプ NCID
収録物識別子 AA0086650X
抄録
内容記述タイプ Abstract
内容記述 A training data selection method is proposed for multilayer neural networks (MLNNs). This method selects a small number of the training data, which guarantee both generalization and fast training of the MLNNs applied to pattern classification. The generalization will be satisfied using the data locate close to the boundary of the pattern classes. However, if these data are only used in the training, convergence is slow. This phenomenon is analyzed in this paper. Therefore, in the proposed method, the MLNN is first trained using some number of the data, which are randomly selected (Step 1). The data, for which the output error is relatively large, are selected. Furthermore, they are paired with the nearest data belong to the different class. The newly selected data are further paired with the nearest data. Finally, pairs of the data, which locate close to the boundary, can be found. Using these pairs of the data, the MLNNs are further trained (Step 2). Since, there are some variations to combine Steps 1 and 2, the proposed method can be applied to both off-line and on-line training. The proposed method can reduce the number of the training data, at the same time, can hasten the training. Usefulness is confirmed through computer simulation.
権利
権利情報 (社)電子情報通信学会の許諾を得て登録
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-27 09:49:03.169628
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3