ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. B. 理工学域; 数物科学類・物質化学類・機械工学類・フロンティア工学類・電子情報通信学類・地球社会基盤学類・生命理工学類
  2. b 10. 学術雑誌掲載論文
  3. 1.査読済論文(工)

Multi-frequency signal classification by multilayer neural networks and linear filter methods

http://hdl.handle.net/2297/18367
http://hdl.handle.net/2297/18367
6e336baf-712d-458f-8b2c-7d511e1454f3
名前 / ファイル ライセンス アクション
T-PR-NAKAYAMA-K-894.pdf T-PR-NAKAYAMA-K-894.pdf (774.5 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2017-10-03
タイトル
タイトル Multi-frequency signal classification by multilayer neural networks and linear filter methods
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Hara, Kazuyuki

× Hara, Kazuyuki

WEKO 11000

Hara, Kazuyuki

Search repository
Nakayama, Kenji

× Nakayama, Kenji

WEKO 353
e-Rad 00207945
研究者番号 00207945

Nakayama, Kenji

Search repository
提供者所属
内容記述タイプ Other
内容記述 金沢大学理工研究域 電子情報学系
書誌情報 IEICE transactions on fundamentals of electronics, communications and computer sciences

巻 E80-A, 号 5, p. 894-902, 発行日 1997-05-25
ISSN
収録物識別子タイプ ISSN
収録物識別子 0916-8508
NCID
収録物識別子タイプ NCID
収録物識別子 AA10826239
出版者
出版者 IEICE transactions on fundamentals of electronics, communications and computer
抄録
内容記述タイプ Abstract
内容記述 This paper compares signal classification performance of multilayer neural networks (MLNNs) and linear filters (LFs). The MLNNs are useful for arbitrary waveform signal classification. On the other hand, LFs are useful for the signals, which are specified with frequency components. In this paper, both methods are compared based on frequency selective performance. The signals to be classified contain several frequency components. Furthermore, effects of the number of the signal samples are investigated. In this case, the frequency information may be lost to some extent. This makes the classification problems difficult. From practical viewpoint, computational complexity is also limited to the same level in both methods. IIR and FIR filters are compared. FIR filters with a direct form can save computations, which is independent of the filter order. IIR filters, on the other hand, cannot provide good signal classification due to their phase distortion, and require a large amount of computations due to their recursive structure. When the number of the input samples is strictly limited, the signal vectors are widely distributed in the multi-dimensional signal space. In this case, signal classification by the LF method cannot provide a good performance. Because, they are designed to extract the frequency components. On the other hand, the MLNN method can form class regions in the signal vector space with high degree of freedom. When the number of the signal samples is not so limited, both the MLNN and LF methods can provide the same high classification rates. In this case, since the signal vectors are distributed in the specific region, the MLNN method has some convergence problem, that is local minimum problem. The initial weights should be carefully determined around the optimum solution. Another point is robustness for noisy signal. The LFs can suppress wide-band noise by using very high-Q filters. However, the MLNN method can be also robust. Rather, it is a little superior to the LF method when the computational load is limited.
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-27 09:40:06.473541
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3