ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. D. 融合研究域; 先導学類・観光デザイン学類・スマート創成科学類
  2. d 10. 学術雑誌掲載論文
  3. 1. 査読済論文

Bayesian online changepoint detection to improve transparency in human-machine interaction systems

https://doi.org/10.24517/00008081
https://doi.org/10.24517/00008081
48a4c53a-356c-4a75-9ea6-b55386e48855
名前 / ファイル ライセンス アクション
TE-PR-YAMAMOTO-S-3572.pdf TE-PR-YAMAMOTO-S-3572.pdf (610.4 kB)
license.icon
Item type 学術雑誌論文 / Journal Article(1)
公開日 2017-10-03
タイトル
タイトル Bayesian online changepoint detection to improve transparency in human-machine interaction systems
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
ID登録
ID登録 10.24517/00008081
ID登録タイプ JaLC
著者 Hon Fai, Lau

× Hon Fai, Lau

WEKO 11197

Hon Fai, Lau

Search repository
Yamamoto, Shigeru

× Yamamoto, Shigeru

WEKO 146
e-Rad 70220465
金沢大学研究者情報 70220465
研究者番号 70220465

Yamamoto, Shigeru

Search repository
著者別表示 山本, 茂

× 山本, 茂

山本, 茂

Search repository
提供者所属
内容記述タイプ Other
内容記述 金沢大学融合研究域融合科学系 / 金沢大学理工研究域電子情報学系
書誌情報 Proceedings of the IEEE Conference on Decision and Control

号 5717959, p. 3572-3577, 発行日 2010-01-01
ISSN
収録物識別子タイプ ISSN
収録物識別子 0191-2216
DOI
関連タイプ isIdenticalTo
識別子タイプ DOI
関連識別子 10.1109/CDC.2010.5717959
出版者
出版者 IEEE
抄録
内容記述タイプ Abstract
内容記述 This paper discusses a way to improve transparency in human-machine interaction systems when no force sensors are available for both the human and the machine. In most cases, position-error based control with fixed proportional-derivative (PD) controllers provides poor transparency. We resolve this issue by utilizing a gain switching method, switching them to be high or low values in response to estimated force changes at the slave environment. Since the slave-environment forces change abruptly in real time, it is difficult to set the precise value of the threshold for these gain switching decisions. Moreover, the threshold value has to be observed and tuned in advance to utilize the gain switching approach. Thus, we adopt Bayesian online changepoint detection to detect the abrupt slave environment change. This changepoint detection is based on the Bayes' theorem which is typically used in probability and statistics applications to generate the posterior distribution of unknown parameters given both data and prior distribution. We then show experimental results which demonstrate the Bayesian online changepoint detection has the ability to discriminate both free motion and hard contact. Additionally, we incorporate the online changepoint detection in our proposed gain switching controller and show the superiority of our proposed controller via experiment. ©2010 IEEE.
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-27 10:22:31.297491
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3