WEKO3
アイテム
{"_buckets": {"deposit": "bd4c5fa4-e646-4d80-97e6-d2eff68ce3e2"}, "_deposit": {"created_by": 3, "id": "8388", "owners": [3], "pid": {"revision_id": 0, "type": "depid", "value": "8388"}, "status": "published"}, "_oai": {"id": "oai:kanazawa-u.repo.nii.ac.jp:00008388", "sets": ["936"]}, "author_link": ["11731", "11734", "11730", "11733", "11732"], "item_4_biblio_info_8": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2014-01-01", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "1", "bibliographicPageEnd": "48", "bibliographicPageStart": "39", "bibliographicVolumeNumber": "9", "bibliographic_titles": [{"bibliographic_title": "IEEJ Transaction on Electrical and Electronic Engineering"}]}]}, "item_4_description_21": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "This article presents a triple-valued gravitational search algorithm (TGSA) to tackle the graph planarization problem (GPP). GPP is one of the most important tasks in graph theory, and has proved to be an NP-hard problem. To solve it, TGSA uses a triple-valued encoding scheme and models the search space into a triangular hypercube quantitatively based on the well-known single-row routing representation method. The agents in TGSA, whose interactions are driven by the gravity law, move toward the global optimal position gradually. The position updating rule for each agent is based on two indices: one is a velocity index which is a function of the current velocity of the agent, and the other is a population index based on the cumulative information in the whole population. To verify the performance of the algorithm, 21 benchmark instances are tested. Experimental results indicate that TGSA can solve the GPP by finding its maximum planar subgraph and embedding the resulting edges into a plane simultaneously. Compared with traditional algorithms, a novelty of TGSA is that it can find multiple optimal solutions for the GPP. Comparative results also demonstrate that TGSA outperforms the traditional meta-heuristics in terms of the solution qualities within reasonable computational times. © 2013 Institute of Electrical Engineers of Japan.", "subitem_description_type": "Abstract"}]}, "item_4_publisher_17": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "電気学会 IEEJ / Wiley-Blackwell"}]}, "item_4_relation_12": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type": "isIdenticalTo", "subitem_relation_type_id": {"subitem_relation_type_id_text": "10.1002/tee.21934", "subitem_relation_type_select": "DOI"}}]}, "item_4_source_id_11": {"attribute_name": "NCID", "attribute_value_mlt": [{"subitem_source_identifier": "AA12144998", "subitem_source_identifier_type": "NCID"}]}, "item_4_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1931-4973", "subitem_source_identifier_type": "ISSN"}]}, "item_4_version_type_25": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_970fb48d4fbd8a85", "subitem_version_type": "VoR"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Gao, Shangce"}], "nameIdentifiers": [{"nameIdentifier": "11730", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Todo, Yuki"}], "nameIdentifiers": [{"nameIdentifier": "11731", "nameIdentifierScheme": "WEKO"}, {"nameIdentifier": "70636927", "nameIdentifierScheme": "金沢大学研究者情報", "nameIdentifierURI": "http://ridb.kanazawa-u.ac.jp/public/detail.php?kaken=70636927"}, {"nameIdentifier": "70636927", "nameIdentifierScheme": "研究者番号", "nameIdentifierURI": "https://nrid.nii.ac.jp/nrid/1000070636927"}]}, {"creatorNames": [{"creatorName": "Gong, Tao"}], "nameIdentifiers": [{"nameIdentifier": "11732", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Yang, Gang"}], "nameIdentifiers": [{"nameIdentifier": "11733", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Tang, Zheng"}], "nameIdentifiers": [{"nameIdentifier": "11734", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2017-10-03"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "TE-PR-TODO-Y-39.pdf", "filesize": [{"value": "412.0 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 412000.0, "url": {"label": "TE-PR-TODO-Y-39.pdf", "url": "https://kanazawa-u.repo.nii.ac.jp/record/8388/files/TE-PR-TODO-Y-39.pdf"}, "version_id": "beafb369-6f4a-4272-993f-9f11dcef4371"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "Graph planarization", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Gravitational search algorithm", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Triple-valued encoding", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Graph Planarization Problem Optimization Based on Triple-Valued Gravitational Search Algorithm", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Graph Planarization Problem Optimization Based on Triple-Valued Gravitational Search Algorithm"}]}, "item_type_id": "4", "owner": "3", "path": ["936"], "permalink_uri": "http://hdl.handle.net/2297/36312", "pubdate": {"attribute_name": "公開日", "attribute_value": "2017-10-03"}, "publish_date": "2017-10-03", "publish_status": "0", "recid": "8388", "relation": {}, "relation_version_is_last": true, "title": ["Graph Planarization Problem Optimization Based on Triple-Valued Gravitational Search Algorithm"], "weko_shared_id": -1}
Graph Planarization Problem Optimization Based on Triple-Valued Gravitational Search Algorithm
http://hdl.handle.net/2297/36312
http://hdl.handle.net/2297/36312f91736ca-db0d-46d4-827a-f36bc04c651d
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2017-10-03 | |||||
タイトル | ||||||
タイトル | Graph Planarization Problem Optimization Based on Triple-Valued Gravitational Search Algorithm | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
著者 |
Gao, Shangce
× Gao, Shangce× Todo, Yuki× Gong, Tao× Yang, Gang× Tang, Zheng |
|||||
書誌情報 |
IEEJ Transaction on Electrical and Electronic Engineering 巻 9, 号 1, p. 39-48, 発行日 2014-01-01 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 1931-4973 | |||||
NCID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA12144998 | |||||
DOI | ||||||
関連タイプ | isIdenticalTo | |||||
識別子タイプ | DOI | |||||
関連識別子 | 10.1002/tee.21934 | |||||
出版者 | ||||||
出版者 | 電気学会 IEEJ / Wiley-Blackwell | |||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | This article presents a triple-valued gravitational search algorithm (TGSA) to tackle the graph planarization problem (GPP). GPP is one of the most important tasks in graph theory, and has proved to be an NP-hard problem. To solve it, TGSA uses a triple-valued encoding scheme and models the search space into a triangular hypercube quantitatively based on the well-known single-row routing representation method. The agents in TGSA, whose interactions are driven by the gravity law, move toward the global optimal position gradually. The position updating rule for each agent is based on two indices: one is a velocity index which is a function of the current velocity of the agent, and the other is a population index based on the cumulative information in the whole population. To verify the performance of the algorithm, 21 benchmark instances are tested. Experimental results indicate that TGSA can solve the GPP by finding its maximum planar subgraph and embedding the resulting edges into a plane simultaneously. Compared with traditional algorithms, a novelty of TGSA is that it can find multiple optimal solutions for the GPP. Comparative results also demonstrate that TGSA outperforms the traditional meta-heuristics in terms of the solution qualities within reasonable computational times. © 2013 Institute of Electrical Engineers of Japan. | |||||
著者版フラグ | ||||||
出版タイプ | VoR | |||||