ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "07ddf614-cf14-4abd-b797-5450c0271280"}, "_deposit": {"created_by": 3, "id": "8393", "owners": [3], "pid": {"revision_id": 0, "type": "depid", "value": "8393"}, "status": "published"}, "_oai": {"id": "oai:kanazawa-u.repo.nii.ac.jp:00008393", "sets": ["936"]}, "author_link": ["11731", "11748"], "item_4_biblio_info_8": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2014-04-01", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "2", "bibliographicPageEnd": "574", "bibliographicPageStart": "565", "bibliographicVolumeNumber": "10", "bibliographic_titles": [{"bibliographic_title": "International Journal of Innovative Computing, Information and Control"}]}]}, "item_4_description_21": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "This paper describes a genetic algorithm based learning Multiple-Value Logic (MVL) network. The proposed learning network operates on a population of candidate window parameters to produce new window parameters with lower errors between the desired outputs and the actual outputs of the MVL network. Thus, the learning MVL network has a large number of search points, making it possible to obtain a global min- imum. The learning capability of the proposed MVL network with genetic algorithm is con rmed by simulations on several typical MVL functions. The simulation results show that the genetic algorithm based learning MVL network efficiently nds the appropriate network, window parameters, and bias, so that the MVL functions, especially for those relatively small problems.", "subitem_description_type": "Abstract"}]}, "item_4_publisher_17": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "ICIC International / Inderscience"}]}, "item_4_source_id_11": {"attribute_name": "NCID", "attribute_value_mlt": [{"subitem_source_identifier": "AA12218449", "subitem_source_identifier_type": "NCID"}]}, "item_4_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1349-4198", "subitem_source_identifier_type": "ISSN"}]}, "item_4_version_type_25": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_ab4af688f83e57aa", "subitem_version_type": "AM"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Todo, Yuki"}], "nameIdentifiers": [{"nameIdentifier": "11731", "nameIdentifierScheme": "WEKO"}, {"nameIdentifier": "70636927", "nameIdentifierScheme": "金沢大学研究者情報", "nameIdentifierURI": "http://ridb.kanazawa-u.ac.jp/public/detail.php?kaken=70636927"}, {"nameIdentifier": "70636927", "nameIdentifierScheme": "研究者番号", "nameIdentifierURI": "https://nrid.nii.ac.jp/nrid/1000070636927"}]}, {"creatorNames": [{"creatorName": "Mitsui, Takahiro"}], "nameIdentifiers": [{"nameIdentifier": "11748", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2017-10-03"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "TE-PR-TODO-Y-565.pdf", "filesize": [{"value": "545.2 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 545200.0, "url": {"label": "TE-PR-TODO-Y-565.pdf", "url": "https://kanazawa-u.repo.nii.ac.jp/record/8393/files/TE-PR-TODO-Y-565.pdf"}, "version_id": "7b994ce9-65b2-4c6a-8936-d18d2d8efedf"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "Multiple-valued logic", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Genetic algorithm", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Learning", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Global minimum", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Local minimum", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "A learning multiple-valued logic networkusing genetic algorithm", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "A learning multiple-valued logic networkusing genetic algorithm"}]}, "item_type_id": "4", "owner": "3", "path": ["936"], "permalink_uri": "http://hdl.handle.net/2297/36317", "pubdate": {"attribute_name": "公開日", "attribute_value": "2017-10-03"}, "publish_date": "2017-10-03", "publish_status": "0", "recid": "8393", "relation": {}, "relation_version_is_last": true, "title": ["A learning multiple-valued logic networkusing genetic algorithm"], "weko_shared_id": 3}
  1. C. 理工学域; 数物科学類・物質化学類・機械工学類・フロンティア工学類・電子情報通信学類・地球社会基盤学類・生命理工学類
  2. c 10. 学術雑誌掲載論文
  3. 1.査読済論文(工)

A learning multiple-valued logic networkusing genetic algorithm

http://hdl.handle.net/2297/36317
http://hdl.handle.net/2297/36317
3379472d-5ebf-444a-8a2f-ceb2c2cc171e
名前 / ファイル ライセンス アクション
TE-PR-TODO-Y-565.pdf TE-PR-TODO-Y-565.pdf (545.2 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2017-10-03
タイトル
タイトル A learning multiple-valued logic networkusing genetic algorithm
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Todo, Yuki

× Todo, Yuki

WEKO 11731
金沢大学研究者情報 70636927
研究者番号 70636927

Todo, Yuki

Search repository
Mitsui, Takahiro

× Mitsui, Takahiro

WEKO 11748

Mitsui, Takahiro

Search repository
書誌情報 International Journal of Innovative Computing, Information and Control

巻 10, 号 2, p. 565-574, 発行日 2014-04-01
ISSN
収録物識別子タイプ ISSN
収録物識別子 1349-4198
NCID
収録物識別子タイプ NCID
収録物識別子 AA12218449
出版者
出版者 ICIC International / Inderscience
抄録
内容記述タイプ Abstract
内容記述 This paper describes a genetic algorithm based learning Multiple-Value Logic (MVL) network. The proposed learning network operates on a population of candidate window parameters to produce new window parameters with lower errors between the desired outputs and the actual outputs of the MVL network. Thus, the learning MVL network has a large number of search points, making it possible to obtain a global min- imum. The learning capability of the proposed MVL network with genetic algorithm is con rmed by simulations on several typical MVL functions. The simulation results show that the genetic algorithm based learning MVL network efficiently nds the appropriate network, window parameters, and bias, so that the MVL functions, especially for those relatively small problems.
著者版フラグ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-27 09:40:00.859193
Show All versions

Share

Mendeley Twitter Facebook Print