WEKO3
インデックスリンク
アイテム
Asymptotic behavior of solutions for damped wave equations with non-convex convection term on the half line
http://hdl.handle.net/2297/31406
http://hdl.handle.net/2297/3140634c30e4a-a162-4f60-94ec-9d90fa5acda3
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2017-10-03 | |||||
タイトル | ||||||
タイトル | Asymptotic behavior of solutions for damped wave equations with non-convex convection term on the half line | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | journal article | |||||
著者 |
Hashimoto, Itsuko
× Hashimoto, Itsuko× Ueda, Yoshihiro |
|||||
書誌情報 |
Osaka Journal of Mathematics 巻 49, 号 1, p. 37-52, 発行日 2012-03-01 |
|||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 0030-6126 | |||||
NCID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA00765910 | |||||
出版者 | ||||||
出版者 | 大阪大学大学院理学研究科 / 大阪市立大学 = Osaka University | |||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | We study the asymptotic stability of nonlinear waves for damped wave equations with a convection term on the half line. In the case where the convection term satisfies the convex and sub-characteristic conditions, it is known by the work of Ueda [7] and Ueda-Nakamura-Kawashima [10] that the solution tends toward a stationary solution. In this paper, we prove that even for a quite wide class of the convection term, such a linear superposition of the stationary solution and the rarefaction wave is asymptotically stable. Moreover, in the case where the solution tends to the non-degenerate stationary wave, we derive that the time convergence rate is polynomially (resp. exponentially) fast if the initial perturbation decays polynomially (resp. exponentially) as x → ∞. Our proofs are based on a technical L 2 weighted energy method. | |||||
著者版フラグ | ||||||
出版タイプ | VoR | |||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 |