ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. B. 理工学域; 数物科学類・物質化学類・機械工学類・フロンティア工学類・電子情報通信学類・地球社会基盤学類・生命理工学類
  2. b 20. 紀要
  3. The science reports of Kanazawa University(金沢大学理科報告)
  4. 59巻

Numerical methods for 1-D hyperbolic-type problems with free boundary

https://doi.org/10.24517/00011107
https://doi.org/10.24517/00011107
c65927cd-fc40-46c2-9f12-5722162d8611
名前 / ファイル ライセンス アクション
AA00835991-59_27-50.pdf AA00835991-59_27-50.pdf (966.1 kB)
license.icon
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2017-10-03
タイトル
タイトル Numerical methods for 1-D hyperbolic-type problems with free boundary
言語
言語 eng
キーワード
主題Scheme Other
主題 hyperbolic free boundary problem
キーワード
主題Scheme Other
主題 fixed domain method
キーワード
主題Scheme Other
主題 finite element method
キーワード
主題Scheme Other
主題 discrete Morse flow
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ departmental bulletin paper
ID登録
ID登録 10.24517/00011107
ID登録タイプ JaLC
著者 Faizal, Makhrus

× Faizal, Makhrus

WEKO 17367

Faizal, Makhrus

Search repository
Akagawa, Yoshiho

× Akagawa, Yoshiho

WEKO 86030
e-Rad 20881650

Akagawa, Yoshiho

Search repository
Alvi, Syahrini

× Alvi, Syahrini

WEKO 17369

Alvi, Syahrini

Search repository
著者別表示 赤川, 佳穂

× 赤川, 佳穂

WEKO 86029
e-Rad 20881650

赤川, 佳穂

Search repository
書誌情報 The science reports of the Kanazawa University = 金沢大学理科報告

巻 59, p. 27-50, 発行日 2015-01-01
ISSN
収録物識別子タイプ ISSN
収録物識別子 0022-8338
NCID
収録物識別子タイプ NCID
収録物識別子 AA00835991
出版者
出版者 Institute of Science and Engineering, Kanazawa University = 金沢大学
抄録
内容記述タイプ Abstract
内容記述 We study a 1-D hyperbolic-type problem with free boundary which describes the motion of a piece of tape being peeled off from a surface. The graph of the solution represents the shape of the tape, which displays contact angle dynamics at the free bound-ary (the location of peeling). The contact angle dynamics lead to singularities located on the free boundary, which cause a slight difficulty. Under some assumptions, this problem can be solved numerically by a so-called fixed domain method. This method is a numer-ical method which transforms the domain of the positive part of the solution into a fixed domain using a change of variables and solves the problem in that domain. Although this method has a high accuracy, it can not be applied in some cases. Hence other numer-ical methods are chosen for solving a regularized problem, i.e., the singularities on the free boundary are regularized by a smoothing function. The numerical methods are: two types of finite difference methods, the finite element method and discrete Morse flow. In this paper, the error of solving the regularized problem instead of the original problem is calculated. Since the choice of the parameter for smoothing function is important for the accuracy, we propose a formula to estimate the optimal parameter in order to mini-mize the error. This formula is verified by numerical experiments and we find that it can estimate the optimal parameter. In addition, based on comparisons between the numeri-cal methods, we find that the finite difference methods have better performance than the other methods.
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-27 11:00:33.803530
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3