ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. B. 理工学域; 数物科学類・物質化学類・機械工学類・フロンティア工学類・電子情報通信学類・地球社会基盤学類・生命理工学類
  2. b 10. 学術雑誌掲載論文
  3. 1.査読済論文(工)

A Neuron Model Capable of Learning Expansion/Contraction Movement Detection without Teacher's Signal

http://hdl.handle.net/2297/35991
http://hdl.handle.net/2297/35991
1cd1c16a-e900-42e9-acb6-15d86ce4b930
名前 / ファイル ライセンス アクション
TE-PR-TODO-Y-4931.pdf TE-PR-TODO-Y-4931.pdf (174.9 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2017-10-03
タイトル
タイトル A Neuron Model Capable of Learning Expansion/Contraction Movement Detection without Teacher's Signal
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Todo, Yuki

× Todo, Yuki

WEKO 11731
金沢大学研究者情報 70636927
研究者番号 70636927

Todo, Yuki

Search repository
Tamura, Hiroki

× Tamura, Hiroki

WEKO 12266

Tamura, Hiroki

Search repository
提供者所属
内容記述タイプ Other
内容記述 金沢大学理工研究域電子情報学系
書誌情報 International Journal of Innovative Computing, Information and Control = International Journal of Innovative Computing, Information and Control

巻 9, 号 12, p. 4931-4941, 発行日 2013-01-01
ISSN
収録物識別子タイプ ISSN
収録物識別子 1349-4198
NCID
収録物識別子タイプ NCID
収録物識別子 AA12218449
出版者
出版者 ICIC International
抄録
内容記述タイプ Abstract
内容記述 Neuron has the characteristic of reacting to a speci c stimulus. The char- acteristic is said to be from the dendritic morphology of neuron. A neuron which reacts to a speci c stimulus has its unique dendritic morphology. Traditional McClloch-Pitts neuron model failed to include such dendritic functions. In this paper, we propose a neu- ron model that includes such nonlinear functions on dendrite and show that the model is capable of learning Expansion/Contraction movement detection without teacher's sig- nals. The proposed model consists of the retina, LGN (lateral geniculate nucleus), V1 (primary visual cortex) and MST (medial superior temporal area). The neuron model of MST learns the Expansion/Contraction movement detection function by plasticity. Plas- ticity of the model neuron is expressed by back-propagation-like algorithm. Furthermore, we propose a method of creating teacher's signals automatically from the output state of the neuron in MST. We initialize the model neuron with an arbitrarily dendrite randomly and use the model neuron to learn to detect the movement of Expansion/Contraction. Our simulation results show that the model neuron can learn the movement detection of Expanision/Contraction pattern without teacher's signals and can develop its dendritic structure, such as the location of synapses and type of synaptic inputs by eliminating un-useful dendritic branches and synapse.
著者版フラグ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-27 08:56:49.804779
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3